Advertisement

Plant Nanobionics: Application of Nanobiosensors in Plant Biology

  • Monica Butnariu
  • Alina Butu
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanobiosensors (NBSs) are a class of chemical sensors which are sensitive to a physical or chemical stimulus (heat, acidity, metabolism transformations) that conveys information about vital processes. NBSs detect physiological signals and convert them into standardized signals, often electrical, to be quantified from analog to digital. NBSs are classified according to the transducer element (electrochemical, piezoelectric, optical, and thermal) in accordance with biorecognition principle (enzyme recognition, affinity immunoassay, whole sensors, DNA). NBSs have varied forms, depending on the degree of interpretation of natural processes in plants. Plant nanobionics uses mathematical models based on qualitative and less quantitative records. NBSs can give information about endogenous concentrations or endogenous fluxes of signaling molecules (phytohormones). The properties of NBSs are temporal and spatial resolution, the ability of being used without significantly interfering with the system. NBSs with the best properties are the optically genetically coded NBSs, but each NBS needs specific development efforts. NBS technologies using antibodies as a recognition domain are generic and tend to be more invasive, and there are examples of their use in plant nanobionics. Through opportunities that develop along with technologies, we hope that more and more NBSs will become available for plant nanobionics. The main advantages of NBSs are short analysis time, low-cost tests and portability, real-time measurements, and remote control.

Keywords

Nanobiosensors Nanobionics Signaling molecules Optical fiber Electrode Molecular recognition 

References

  1. Affi M, Solliec C, Legentilhomme P, Comiti J, Legrand J, Jouanneau S, Thouand G (2016) Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor. Anal Bioanal Chem 408(30):8761–8770CrossRefGoogle Scholar
  2. Agrawal R, Satlewal A, Chaudhary M, Verma A, Singh R, Verma AK, Kumar R, Singh KP (2012) Rapid detection of cadmium–resistant plant growth promotory rhizobacteria: a perspective of ELISA and QCM-based immunosensor. J Microbiol Biotechnol 22(6):849–855CrossRefGoogle Scholar
  3. Alvarez-Fernandez R (2010) Patented applications of gene silencing in plants: manipulation of traits and phytopathogen resistance. Recent Pat DNA Gene Seq 4(3):167–180CrossRefGoogle Scholar
  4. Armstrong W, Beckett PM (2011) Experimental and modelling data contradict the idea of respiratory down–regulation in plant tissues at an internal [O2] substantially above the critical oxygen pressure for cytochrome oxidase. New Phytol 190(2):431–441CrossRefGoogle Scholar
  5. Barroso MF, Freitas M, Oliveira MB, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Delerue-Matos C (2015) 3D-nanostructured Au electrodes for the event–specific detection of MON810 transgenic maize. Talanta 134:158–164CrossRefGoogle Scholar
  6. da Silva CP, Franzoi AC, Fernandes SC, Dupont J, Vieira IC (2013) Development of biosensor for phenolic compounds containing PPO in β–cyclodextrin modified support and iridium nanoparticles. Enzym Microb Technol 52(4–5):296–301CrossRefGoogle Scholar
  7. Espinoza MA, Istamboulie G, Chira A, Noguer T, Stoytcheva M, Marty JL (2014) Detection of glycoalkaloids using disposable biosensors based on genetically modified enzymes. Anal Biochem 457:85–90CrossRefGoogle Scholar
  8. Fang X, Chen J, Dai L, Ma H, Zhang H, Yang J, Wang F, Yan C (2015) Proteomic dissection of plant responses to various pathogens. Proteomics 15(9):1525–1543CrossRefGoogle Scholar
  9. Frederickson Matika DE, Loake GJ (2014) Redox regulation in plant immune function. Antioxidant Redox Signal 21(9):1373–1388CrossRefGoogle Scholar
  10. Gaggeri R, Rossi D, Christodoulou MS, Passarella D, Leoni F, Azzolina O, Collina S (2012) Chiral flavanones from Amygdalus lycioides Spach: structural elucidation and identification of TNF alpha inhibitors by bioactivity–guided fractionation. Molecules 17(2):1665–1674CrossRefGoogle Scholar
  11. Genfa L, Jiang Z, Hong Z, Yimin Z, Liangxi W, Guo W, Ming H, Donglen J, Lizhao W (2005) The screening and isolation of an effective anti–endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol 5(6):1007–1017CrossRefGoogle Scholar
  12. Hamers D, van Voorst Vader L, Borst JW, Goedhart J (2014) Development of FRET biosensors for mammalian and plant systems. Protoplasma 251(2):333–347CrossRefGoogle Scholar
  13. He W, Yuan S, Zhong WH, Siddikee MA, Dai CC (2016) Application of genetically engineered microbial whole–cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 100(3):1109–1119CrossRefGoogle Scholar
  14. Heyl A, Riefler M, Romanov GA, Schmülling T (2012) Properties, functions and evolution of cytokinin receptors. Eur J Cell Biol 91(4):246–256CrossRefGoogle Scholar
  15. Hines G, Modavi C, Jiang K, Packard A, Poolla K, Feldman L (2015) Tracking transience: a method for dynamic monitoring of biological events in Arabidopsis thaliana biosensors. Planta 242(5):1251–1261CrossRefGoogle Scholar
  16. Ibrahim MA, Stewart–Jones A, Pulkkinen J, Poppy GM, Holopainen JK (2008) The influence of different nutrient levels on insect–induced plant volatiles in Bt and conventional oilseed rape plants. Plant Biol (Stuttg) 10(1):97–107CrossRefGoogle Scholar
  17. Jacoby RP, Millar AH, Taylor NL (2015) Assessment of respiration in isolated plant mitochondria using Clark–type electrodes. Methods Mol Biol 1305:165–185CrossRefGoogle Scholar
  18. Jones AM, Grossmann G, Danielson JÅ, Sosso D, Chen LQ, Ho CH, Frommer WB (2013) In vivo biochemistry: applications for small molecule biosensors in plant biology. Curr Opin Plant Biol 16(3):389–395CrossRefGoogle Scholar
  19. Kazakova LI, Shabarchina LI, Anastasova S, Pavlov AM, Vadgama P, Skirtach AG, Sukhorukov GB (2013) Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal Bioanal Chem 405(5):1559–1568CrossRefGoogle Scholar
  20. Kersten B, Feilner T (2007) Generation of plant protein microarrays and investigation of antigen–antibody interactions. Methods Mol Biol 355:365–378PubMedGoogle Scholar
  21. Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of BvGLP–1 encoding a germin–like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant-Microbe Interact 23(4):446–457CrossRefGoogle Scholar
  22. Kozan JV, Silva RP, Serrano SH, Lima AW, Angnes L (2007) Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocos nucifera L.) fibers. Anal Chim Acta 591(2):200–207CrossRefGoogle Scholar
  23. Kurien BT, D'Souza A, Scofield RH (2010) Heat-solubilized curry spice curcumin inhibits antibody-antigen interaction in in vitro studies: a possible therapy to alleviate autoimmune disorders. Mol Nutr Food Res 54(8):1202–1209PubMedPubMedCentralGoogle Scholar
  24. Li X, Han B, Xu M, Han L, Zhao Y, Liu Z, Dong H, Zhang C (2014) Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1. Planta 239(4):831–846CrossRefGoogle Scholar
  25. Liu LH, Zhou XH, Shi HC (2015) Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand–grafted biosensing surface. Biosens Bioelectron 72:300–305CrossRefGoogle Scholar
  26. Liu X, Chen M, Onstad D, Roush R, Shelton AM (2011) Effect of Bt broccoli and resistant genotype of Plutella xylostella (Lepidoptera: Plutellidae) on development and host acceptance of the parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Transgenic Res 20(4):887–897CrossRefGoogle Scholar
  27. Lukács A, Garab G, Papp E (2006) Measurement of the optical parameters of purple membrane and plant light–harvesting complex films with optical waveguide lightmode spectroscopy. Biosens Bioelectron 21(8):1606–1612CrossRefGoogle Scholar
  28. McLamore ES, Jaroch D, Chatni MR, Porterfield DM (2010) Self–referencing optrodes for measuring spatially resolved, real–time metabolic oxygen flux in plant systems. Planta 232(5):1087–1099CrossRefGoogle Scholar
  29. Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox–sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52(5):973–986CrossRefGoogle Scholar
  30. Michelini E, Roda A (2012) Staying alive: new perspectives on cell immobilization for biosensing purposes. Anal Bioanal Chem 402(5):1785–1797CrossRefGoogle Scholar
  31. Miranda OR, Li X, Garcia–Gonzalez L, Zhu ZJ, Yan B, Bunz UH, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme–nanoparticle biosensor. J Am Chem Soc 133(25):9650–9653CrossRefGoogle Scholar
  32. Muñoz FJ, Rumbero A, Sinisterra JV, Santos JI, André S, Gabius HJ, Jiménez-Barbero J, Hernáiz MJ (2008) Versatile strategy for the synthesis of biotin–labelled glycans, their immobilization to establish a bioactive surface and interaction studies with a lectin on a biochip. Glycoconj J 25(7):633–646CrossRefGoogle Scholar
  33. Nelsen B, Kadesch T, Sen R (1990) Complex regulation of the immunoglobulin mu heavy-chain gene enhancer: microB, a new determinant of enhancer function. Mol Cell Biol 10(6):3145–3154CrossRefGoogle Scholar
  34. Nikolelis DP, Ntanos N, Nikoleli GP, Tampouris K (2008) Development of an electrochemical biosensor for the rapid detection of naphthalene acetic acid in fruits by using air stable lipid films with incorporated auxin–binding protein 1 receptor. Protein Pept Lett 15(8):789–794CrossRefGoogle Scholar
  35. Panchal MB, Upadhyay SH (2014) Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling–based simulation approach. IET Nanobiotechnol 8(3):143–148CrossRefGoogle Scholar
  36. Potocký M, Pleskot R, Pejchar P, Vitale N, Kost B, Zárský V (2014) Live–cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p–derived biosensor. New Phytol 203(2):483–494CrossRefGoogle Scholar
  37. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014CrossRefPubMedPubMedCentralGoogle Scholar
  38. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  39. Ramirez RA, Spears LR (2014) Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa. J Chem Ecol 40(10):1099–1109CrossRefGoogle Scholar
  40. Raymond B, Sayyed AH, Wright DJ (2007) Host plant and population determine the fitness costs of resistance to Bacillus thuringiensis. Biol Lett 3(1):82–85CrossRefGoogle Scholar
  41. Richard MM, Pflieger S, Sévignac M, Thareau V, Blanchet S, Li Y, Jackson SA, Geffroy V (2014) Fine mapping of Co–x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theor Appl Genet 127(7):1653–1666CrossRefGoogle Scholar
  42. Rodríguez–Sevilla E, Ramírez–Silva MT, Romero–Romo M, Ibarra–Escutia P, Palomar–Pardavé M (2014) Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors (Basel) 14(8):14423–14439CrossRefGoogle Scholar
  43. Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, Morimoto S (2018) Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med 72(1):32–42CrossRefGoogle Scholar
  44. Stein NE, Keesman KJ, Hamelers HV, van Straten G (2011) Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. Biosens Bioelectron 26(7):3115–3120CrossRefGoogle Scholar
  45. Takakusagi Y, Manita D, Kusayanagi T, Izaguirre–Carbonell J, Takakusagi K, Kuramochi K, Iwabata K, Kanai Y, Sakaguchi K, Sugawara F (2013) Mapping a disordered portion of the Brz2001–binding site on a plant monooxygenase, DWARF4, using a quartz–crystal microbalance biosensor–based T7 phage display. Assay Drug Dev Technol 11(3):206–215CrossRefGoogle Scholar
  46. Vigneux F, Zumbihl R, Jubelin G, Ribeiro C, Poncet J, Baghdiguian S, Givaudan A, Brehélin M (2007) The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J Biol Chem 282(13):9571–9580CrossRefGoogle Scholar
  47. Wan Salim WW, Zeitchek MA, Hermann AC, Ricco AJ, Tan M, Selch F, Fleming E, Bebout BM, Bader MM, Ul Haque A, Porterfield DM (2013) Multi-analyte biochip (MAB) based on all-solid-state ion–selective electrodes (ASSISE) for physiological research. J Vis Exp (74)Google Scholar
  48. Werner S, Polle A, Brinkmann N (2016) Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil–inhabiting organisms. Appl Microbiol Biotechnol 100(20):8651–8665CrossRefGoogle Scholar
  49. Wolfbeis OS (2015) Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. BioEssays 37(8):921–928CrossRefGoogle Scholar
  50. Wu H, Liu J, Zhang J, Li C, Fan J, Xu X (2014) Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model. Environ Sci Pollut Res Int 21(2):1071–1078CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monica Butnariu
    • 1
  • Alina Butu
    • 2
  1. 1.Chemistry & Biochemistry DisciplineBanat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from TimisoaraTimisoaraRomania
  2. 2.National Institute of Research and Development for Biological Sciences, Splaiul IndependenteiBucharestRomania

Personalised recommendations