Advertisement

Nanotechnology: An Emerging Tool for Management of Biotic Stresses in Plants

  • Monika Hajong
  • Nongthombam Olivia Devi
  • Manashi Debbarma
  • Dipali Majumder
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Biotic stresses are the major factors limiting the crop productivity worldwide. Indiscriminate application of chemicals used for crop protection is the serious concern for health and environmental hazards. Moreover, such practices deteriorate the soil health and increase resistance in phytopathogens and pests. Nanotechnology, the novel interdisciplinary technique developed in last decades provides the sustainable solution. Nanotechnology has the potential to revolutionize agricultural practices. Nanoparticles (NPs), nanobiosensors, quantum dots (QDs), nanobarcodes, and microRNA (miRNA)-based approach have potential role in rapid diagnosis and combating insect pests and diseases in plants. This chapter deals with potential use of NMs in crop protection for better eco-friendly management against biotic stresses in plants.

Keywords

Nanobiosensors Quantum dots Nanobarcodes MicroRNA 

References

  1. Abd-Elsalam K and Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing (ISBN 978-3-319-91161-8) https://www.springer.com/us/book/9783319911601
  2. Abigail EA, Chidambaram R (2017) Nanotechnology in herbicide resistance. In Nanostructured Mat Fabrication Appl In Tech.  https://doi.org/10.5772/intechopen.68355Google Scholar
  3. Abkhoo J, Panjehkeh N (2017) Evaluation of antifungal activity of silver nanoparticles on Fusarium oxysporum. Int J Inf Secur 4:41126Google Scholar
  4. Abobatta WF (2018) Nanotechnology application in agriculture. Acta Sci Agric 2(6):99–102Google Scholar
  5. Acharyulu NPS, Dubey RS, Swaminadham V, Kalyani RL, Kollu P, Pammi SVN (2014) Green synthesis of CuO nanoparticles using Phyllanthus amarusleaf extract and their antibacterial activity against multidrug resistance bacteria. Int J Eng Res Technol 3:639–641Google Scholar
  6. Acosta C, Barat JM, Martinez-Manez R, Sancenon F, Llopis S, Gonzalez N, Martorell P (2018) Toxicological assessment of mesoporous silica particles in the nematode Caenorhabditis elegans. Environ Res 166:61–70PubMedCrossRefGoogle Scholar
  7. Adak T, Kumar J, Dey D, Shakil NA, Walia S (2012) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J Environ Sci Health B47:226–231CrossRefGoogle Scholar
  8. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269PubMedCrossRefGoogle Scholar
  9. Ahmed AI (2017) Chitosan and silver nanoparticles as control agents of some Faba bean spot diseases. J Plant Pathol Microbiol 8(9).  https://doi.org/10.4172/2157-7471.1000421
  10. Ahmed S, Ikram S (2015) Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. J Nanomed Nanotechnol 6:309.  https://doi.org/10.4172/2157-7439.1000309CrossRefGoogle Scholar
  11. Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX andPVY in plants. Plant Biol 13:304–316PubMedCrossRefPubMedCentralGoogle Scholar
  12. Alkubaisi NAO, Aref NMMA, Hendi AA (2015) Method of inhibiting plant virus using gold nanoparticles U.S. Patent No. 9,198,434, 1 Dec 2015Google Scholar
  13. Amini Jam N, Kocheili F, Mossadegh MS, Rasekh A, Saber M (2014) Lethal and sublethal effects of imidacloprid and pirimicarb on the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae) under laboratory conditions. J Crop Prot 3:89–98Google Scholar
  14. Ardakani AS (2013) Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematol 15(6):671–677CrossRefGoogle Scholar
  15. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827PubMedCrossRefGoogle Scholar
  16. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomedicine 7:3527–3535PubMedPubMedCentralCrossRefGoogle Scholar
  17. Baac H, Hajos JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng 94(4):815–819PubMedCrossRefGoogle Scholar
  18. Badial AB, Sherman D, Stone A, Gopakumar A, Wilson V, Schneider W, King J (2018) Nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues. Plant Dis 102(8):1648–1652CrossRefGoogle Scholar
  19. Banik S, Luque AP (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Span J Agric Res 15(2):23–37CrossRefGoogle Scholar
  20. Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopath 64(2):120–127Google Scholar
  21. Bansal P, Duhan JS, Gahlawat SK (2014) Biogenesis of nanoparticles: a review. Afr J Biotechnol 13:2778–2785CrossRefGoogle Scholar
  22. Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, pp 307–319Google Scholar
  25. Bhau BS, Phukon P, Ahmed R, Gogoi B, Borah B, Baruah J, Wann SB (2016) A novel tool of nanotechnology: nanoparticle mediated control of nematode infection in plants. In: Microbial inoculants in sustainable agricultural productivity. Springer, New DelhiGoogle Scholar
  26. Blechinger J, Bauer AT, Torrano AA, Gorzelanny C, Brauchle C, Schneider SW (2013) Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small 9:3970–3980PubMedCrossRefPubMedCentralGoogle Scholar
  27. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441PubMedCrossRefPubMedCentralGoogle Scholar
  28. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363CrossRefGoogle Scholar
  29. Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163–2175PubMedCrossRefPubMedCentralGoogle Scholar
  30. Brecht MO, Datnoff LE, Kucharek TA, Nagata RT (2004) Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Dis 88(4):338–344PubMedCrossRefPubMedCentralGoogle Scholar
  31. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–616CrossRefGoogle Scholar
  32. Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:1–19CrossRefGoogle Scholar
  33. Chakravarty D, Erande MB, Late DJ (2015) Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric 95:2772–2778PubMedCrossRefGoogle Scholar
  34. Chandra JH, Raj LA, Namasivayam SKR, Bharani RA (2013). Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. Paper presented at International Conference. In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), pp 387–390Google Scholar
  35. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195.  https://doi.org/10.1038/srep15195CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. In: Proceedings of the 218th electrochemicalsociety meeting, Las Vegas, Nevada, USA, pp 2278–2278Google Scholar
  37. Chaudhary V, Jangra S, Yadav NR (2018) Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnol 16:40.  https://doi.org/10.1186/s12951-018-0368-8CrossRefGoogle Scholar
  38. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  39. Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25(4):723–727PubMedCrossRefGoogle Scholar
  40. Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31Google Scholar
  41. Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19:131–151Google Scholar
  42. Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-effects of size and crystalline structure. Chemosphere 90:1083–1090PubMedCrossRefGoogle Scholar
  43. Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-Garcia J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–285PubMedCrossRefGoogle Scholar
  44. Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  45. Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266PubMedPubMedCentralGoogle Scholar
  46. Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri Sao Pedr, Brazil, pp 28–33Google Scholar
  47. Cvjetko P, Milosic A, Domijan AM, Vinkovic-Vrcek I, Tolic S, Peharec Stefanic P, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28PubMedCrossRefGoogle Scholar
  48. Degliangeli F, Pompa PP, Fiammengo R (2014) Nanotechnology-based strategies for the detection and quantification of microRNA. Chem Eur J 20:9476–9492PubMedCrossRefGoogle Scholar
  49. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640PubMedCrossRefGoogle Scholar
  50. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3.  https://doi.org/10.4081/nd.2013.e1CrossRefGoogle Scholar
  51. Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14:1–15CrossRefGoogle Scholar
  52. Du Z, Wang C, Tai X, Wang G, Liu X (2016) Optimization and characterization of biocompatible oil-in-water nanoemulsion for pesticide delivery. ACS Sustain Chem Eng 4:983–991CrossRefGoogle Scholar
  53. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  54. Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3:413–417CrossRefGoogle Scholar
  55. Duran N, Priscyla D, Marcato Alves OL, Gabriel IH, Souza D, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8.  https://doi.org/10.1186/1477-3155-3-8CrossRefGoogle Scholar
  56. Eastman PS, Ruan W, Doctolero M, Nuttall R, De Feo G, Park JS, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064PubMedCrossRefGoogle Scholar
  57. Eerikainen H, Watanabe W, Kauppinen E, Ahonen P (2003) Aerosol flow reactor method for the synthesis of drug nanoparticles. Eur J Pharm Biopharm 55:357–360PubMedCrossRefGoogle Scholar
  58. El-bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silica nano-particles a potential new insecticide for pest control. Appl Sci Rep 4:241–246Google Scholar
  59. Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf A Physicochem Eng Asp 372:66–72CrossRefGoogle Scholar
  60. El-Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987PubMedPubMedCentralCrossRefGoogle Scholar
  61. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49PubMedCrossRefGoogle Scholar
  62. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta Mol Biomol Spectrosc 143:158–164CrossRefGoogle Scholar
  63. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332PubMedCrossRefGoogle Scholar
  64. Fauteux F, Chain F, Belzile F, Menzies JG, Belanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci 103(46):17554–17559PubMedCrossRefGoogle Scholar
  65. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotech Biol Med 5(4):382–386CrossRefGoogle Scholar
  66. Gallardo RV, Cruz JFO, Ortiz-Rodriguez OO (2016) Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesq Agropec Bras 51(12):1929–1936CrossRefGoogle Scholar
  67. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO(2) treatment related to the changes of Rubisco activase? Biometals 21:211–217PubMedCrossRefGoogle Scholar
  68. Gericke WF (1937) Hydroponics – crop production in liquid culture media. Science 85:177–178PubMedCrossRefGoogle Scholar
  69. Gogoi R, Dureja P, Singh PK (2009) Nanoformulations a safer and effective option for agrochemicals. Ind Farm 59(8):7–12Google Scholar
  70. Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Liu C (2006) A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10):1293–1299PubMedCrossRefGoogle Scholar
  71. Gopal M, Kumar R, Goswami A (2012) Nano-pesticides - a recent approach for pest control. J Plant Prot Sci 4(2):1–7Google Scholar
  72. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257CrossRefGoogle Scholar
  73. Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3:394–399Google Scholar
  74. Gruere G, Clare N, Linda A (2011) Agricultural food and water nanotechnologies for the poor opportunities, constraints and role of the consultative Group on International Agricultural ResearchGoogle Scholar
  75. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159(6):1551–1559PubMedCrossRefGoogle Scholar
  76. Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Nanobiotechnology applications in plant protection (eds. Abd-Elsalam K and Prasad R), Springer International Publishing AG 247–266Google Scholar
  77. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotech Biol Med 8(1):37–45CrossRefGoogle Scholar
  78. Haleemkhan AA, Naseem B, Vardhini BV (2015) Synthesis of nanoparticles from plant extracts. Int J Modern Chem Appl Sci 2:195–203Google Scholar
  79. Hazra DK, Megha P, Raza SK, Patanjali PK (2013) Patanjali formulation technology: key parameters for food safety with respect to agrochemicals use in crop protection. J Plant Prot Sci 5(2):1–19Google Scholar
  80. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215PubMedCrossRefGoogle Scholar
  81. Helaly AA, Bendary HME, Abdel-Wahab AS, El-Sheikh MAK, Elnagar S (2016) The silica nanoparticles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae. J Entomol Zool Stud 4(1):175–180Google Scholar
  82. Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in-vitro cultures and organogenic regeneration of banana. Aus J Crop Sci 8(4):612–624Google Scholar
  83. Huang XL, Bronstein LM, Retrum J, Dufort C, Tsvetkova I, Aniagyei S, Stein B, Stucky G, McKenna B, Remmes N, Baxter D, Kao CC, Dragnea B (2007) Self-assembled virus-like particles with magnetic cores. Nano Lett 7:2407–2416PubMedCrossRefGoogle Scholar
  84. Hussain T (2017) Nanociedes: smart delivery system in agriculture and horticultural crops. Adv Plants Agric Res 6(6):00233.  https://doi.org/10.15406/apar.2017.06.00233CrossRefGoogle Scholar
  85. Hwang I, Lee J, Hwang JH, Kim KJ, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338PubMedCrossRefGoogle Scholar
  86. Hwang IC, Kim TH, Bang SH, Kim KS, Kwon HR, Seo MJ, Yu YM (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agri Kyushu Univ 56:33–40Google Scholar
  87. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore 305–317Google Scholar
  88. Jain D, Kothari SL (2014) Green synthesis of silver nanoparticles and their application in plant virus inhibition. J Mycol Plant Pathol 44(1):21–24Google Scholar
  89. Jain K (2003) Nanodiagnostics: application of nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn 2:153–161CrossRefGoogle Scholar
  90. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84PubMedCrossRefGoogle Scholar
  91. Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–1886PubMedCrossRefGoogle Scholar
  92. Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405PubMedCrossRefGoogle Scholar
  93. Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RN, Zaliah RN (2011) Physicochemical characterization of nonionic surfactants in oil-in-water (O/W) nanoemulsions for new pesticide formulations. Inter J Appl Sci Technol 1:131–142Google Scholar
  94. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043PubMedCrossRefGoogle Scholar
  95. Joginder SD, Ravinder K, Naresh K, Pawan K, Kiran N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  96. Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336PubMedCrossRefGoogle Scholar
  97. Kageyama S, Kitano S, Hirayama M, Nagata Y, Imai H (2008) Humoral immune responses in patients vaccinated with 1-146 HER-2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99(3):601–607PubMedCrossRefGoogle Scholar
  98. Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153PubMedCrossRefGoogle Scholar
  99. Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. Nanosci Food Agri 2:253–276CrossRefGoogle Scholar
  100. Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP (2015) Green synthesis of silver nanoparticles using Croton sparsiflorusmorong leaf extract and their antibacterial and antifungal activities. Spectrochimica Acta Part A Mol Biomol Spectrosc 139:200–205CrossRefGoogle Scholar
  101. Khalil MMH, Ismail EH, Baghdady KZE, Mohamed D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7:1131–1139CrossRefGoogle Scholar
  102. Khan MR, Haque Z, Kausar N (2014) Management of the root-knot nematode Meloidogyne graminicola infesting rice in the nursery and crop field by integrating seed priming and soil application treatments of pesticides. Crop Prot 63:15–25CrossRefGoogle Scholar
  103. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231CrossRefGoogle Scholar
  104. Khatoon N, Mazumder JA, Sardar M (2017) Biotechnological applications of green synthesized silver nanoparticles. J Nanosci Curr Res 2:107.  https://doi.org/10.4172/2572-0813.1000107CrossRefGoogle Scholar
  105. Khodakovskaya M, Silva KD, Biris AS, Dervishi E, Villagarica H (2012) Carbon nanotubes induce growth enhancement in tobacco cells. ACS Nano 6:2128–2135PubMedCrossRefPubMedCentralGoogle Scholar
  106. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions. Proc Natl Acad Sci U S A 108:1028–1033PubMedCrossRefPubMedCentralGoogle Scholar
  107. Kim HS, Kang HS, Chu GJ, Byun HS (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18CrossRefGoogle Scholar
  108. Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9(3):129–134PubMedCrossRefGoogle Scholar
  110. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588PubMedCrossRefGoogle Scholar
  111. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99PubMedCrossRefGoogle Scholar
  112. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological - An updated report. Saudi Pharm J 24:473–484PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultra small anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199PubMedPubMedCentralCrossRefGoogle Scholar
  115. Lattanzio VM, Nivarlet N, Lippolis V, Gatta SD, Huet AC, Delahaut P, Visconti A (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chimacta 718:99–108CrossRefGoogle Scholar
  116. Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  117. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  118. Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ- Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334PubMedCrossRefGoogle Scholar
  119. Li J, Sang H, Guo H, Popko JT, He L, White JC, Dhankher OP, Jung G, Xing B (2017) Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnol 28(15):155101.  https://doi.org/10.1088/1361-6528/aa61f3CrossRefGoogle Scholar
  120. Li L, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351CrossRefGoogle Scholar
  121. Li Y, Cu YTH, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889PubMedCrossRefGoogle Scholar
  122. Lim CJ, Basri M, Omar D, Rahman MBA, Salleh AB (2011) Self-assembly behaviour of alkylpolyglucosides (APG) in mixed surfactant-stabilized emulsions system. J Mol Liq 158(3):175–181CrossRefGoogle Scholar
  123. Lim D, Roh JY, Eom HJ, Choi JY, Hyun J, Choi J (2012) Oxidative stress related PMK 1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31(3):585–592PubMedCrossRefPubMedCentralGoogle Scholar
  124. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefGoogle Scholar
  125. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  126. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139PubMedCrossRefGoogle Scholar
  127. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  128. Luque APD, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545CrossRefGoogle Scholar
  129. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32Google Scholar
  130. Maqueda C, Partal P, Villaverde J, Perez-Rodriguez JL (2009) Characterization of sepiolitegel- based formulations for controlled release of pesticides. Appl Clay Sci 46:289–295CrossRefGoogle Scholar
  131. Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch HC (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187(16):5560–5567PubMedPubMedCentralCrossRefGoogle Scholar
  132. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. J Plant Pathol 25:376–380CrossRefGoogle Scholar
  133. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J Rl Soc Interface 9:3514–3527CrossRefGoogle Scholar
  134. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefGoogle Scholar
  135. Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471.  https://doi.org/10.3389/fpls.2017.00471CrossRefPubMedPubMedCentralGoogle Scholar
  136. Mohammad AK, Hassan A, Yasser MA, Mousa AA, Kamel AA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Equip 28(5):775–785CrossRefGoogle Scholar
  137. Mondal P, Kumar R, Gogoi R (2017) Azomethine based nano-chemicals: development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg Chem 70:153–162PubMedCrossRefGoogle Scholar
  138. Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol 1(10):414–419Google Scholar
  139. Nadi E, Aynehband A, Mojaddam M (2013) Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of faba bean (Vicia faba L.) Int. J Biosci 3:267–272Google Scholar
  140. Nair PM, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion and molecular level changes. Environ Sci Pollut Res Int 21:12709–12022PubMedCrossRefGoogle Scholar
  141. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  142. Namasivayam KRS, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNP-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotech 9(9):19–27Google Scholar
  143. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  144. Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618PubMedPubMedCentralCrossRefGoogle Scholar
  145. Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5:2.  https://doi.org/10.4172/2161-0444.1000247CrossRefGoogle Scholar
  146. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980PubMedCrossRefGoogle Scholar
  147. Oluwaseun AC, Sarin NB (2017) Impacts of biogenic nanoparticle on the biological control of plant pathogens. Adv Biotech Micro 7(3).  https://doi.org/10.19080/AIBM.2017.07.555711
  148. Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. Log Forum 6(4):67–70Google Scholar
  149. Panacek A, Kvytek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B110:16248–16253CrossRefGoogle Scholar
  150. Pandey P, IrulappanV BMV, Kumar MS (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537.  https://doi.org/10.3389/fpls.2017.00537CrossRefPubMedPubMedCentralGoogle Scholar
  151. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242PubMedPubMedCentralCrossRefGoogle Scholar
  152. Patil SA (2009) Economics of agri poverty: nano-bio solutions. Indian Agricultural Research Institute, New Delhi, IndianGoogle Scholar
  153. Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Advanced nanomaterials and nanotechnology. Springer, Berlin Heidelberg, pp 301–309CrossRefGoogle Scholar
  154. Patra P, Goswami A (2012) Zinc nitrate derived nano ZnO: fungicide for disease management of horticultural crops. Int J Innov Hort 1:79–84Google Scholar
  155. Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28(49):16966–16978PubMedCrossRefGoogle Scholar
  156. Pestovsky YS, Martinez-Antonio A (2017) The use of nanoparticles and nanoformulations in agriculture. J Nanosci Nanotechnol 17(12):8699–8730CrossRefGoogle Scholar
  157. Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, Hackley V, Xing B, White JC (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48(8):4226–4246PubMedPubMedCentralCrossRefGoogle Scholar
  158. Phillips MA, Gran ML, Peppas NA (2010) Targeted nanodelivery of drugs and diagnostics. Nano Today 5(2):143–159PubMedPubMedCentralCrossRefGoogle Scholar
  159. Piscureanu A, Pop T, Dogaru M, Piscureanu M, Manaila-Maximean D (2001) Influence of non-ionic surfactants on surface activity of pesticide colloidal systems. Colloids Surf A Physicochem Eng Asp 178:129–133CrossRefGoogle Scholar
  160. Pluskota A, Horzowski E, Bossinger O, vonMikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4(8):6622.  https://doi.org/10.1371/journal.pone.0006622CrossRefGoogle Scholar
  161. Prameela KL (2017) Nanomaterial’s applications in agriculture. J Chem Pharm Sci 10(1):593–596Google Scholar
  162. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 14(1):1–8.  https://doi.org/10.1155/2014/963961CrossRefGoogle Scholar
  163. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014CrossRefPubMedPubMedCentralGoogle Scholar
  164. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  165. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  166. Prasad R, Kumar V, Kumar M, and Choudhary D (2019) Nanobiotechnology in bioformulations. Springer International Publishing (ISBN 978-3-030-17061-5) https://www.springer.com/gp/book/9783030170608
  167. Qi M, Liu Y, Li T (2013) Nano-TiO2 improves the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  168. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1955CrossRefGoogle Scholar
  169. Rai M, Yadav A, Gade A (2009) Silver nanoparticle as a new generation of antimicrobials. Biotechnol Adv 27:76–83PubMedCrossRefGoogle Scholar
  170. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta Mol Biomol Spectrosc 12:384–387CrossRefGoogle Scholar
  171. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  172. Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306PubMedCrossRefGoogle Scholar
  173. Rastogi A, Pospisil P (2010) Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Plant Physiol Biochem 48:117–123PubMedCrossRefGoogle Scholar
  174. Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66(3):108–115CrossRefGoogle Scholar
  175. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940PubMedCrossRefPubMedCentralGoogle Scholar
  176. Rosen JE, Yoffe S, Meerasa A, Verma M, Gu FX (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2(5):112.  https://doi.org/10.4172/2157-7439.1000115CrossRefGoogle Scholar
  177. Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72(4):590–594CrossRefGoogle Scholar
  178. Sadurni N, Solans C, Azemar N, Garcia-Celma MJ (2005) Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical application. Eur J Pharm Sci 26(5):438–451PubMedCrossRefGoogle Scholar
  179. Sahab AF, Waly AI, Sabbour MM, Nawar LS (2015) Synthesis, antifungal and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid)(PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J Chem Technol Res 8:589–598Google Scholar
  180. Saifuddin N, Wong CW, Nuryasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6:61–70Google Scholar
  181. Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23(1):S75–S78PubMedCrossRefGoogle Scholar
  182. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504PubMedCrossRefGoogle Scholar
  183. Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim SK (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7:968–976PubMedCrossRefGoogle Scholar
  184. Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nanozerovalent iron. Water Air Soil Pollut 192(1–4):349–359CrossRefGoogle Scholar
  185. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for globalfood production losses and food security. Food Sec 19.  https://doi.org/10.1007/s12571-012-0200-5CrossRefGoogle Scholar
  186. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolataan endemic and endangered medicinal tree taxon. Nano Vision 2:61–68Google Scholar
  187. Scharf A, Piechulek A, Von Mikecz A (2013) Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 7(12):10695–10703PubMedCrossRefGoogle Scholar
  188. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highlyspecific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell Online 18:1121–1133CrossRefGoogle Scholar
  189. Selva Preetha P, Balakrishnan N (2017) A review of nano fertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6:3117–3133CrossRefGoogle Scholar
  190. Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465Google Scholar
  191. Shah SN, Steinmetz NF, Aljabali AAA, Lomonossoff GP, Evans DJ (2009) Environmentally benign synthesis of virus-templated, monodisperse, iron-platinum nanoparticles. Dalton Trans 40:8479–8480CrossRefGoogle Scholar
  192. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1):143–148CrossRefGoogle Scholar
  193. Sharma K, Sharma R, Shit S, Gupta S (2012a) Nanotechnological Application on Diagnosisof a Plant Disease. Paper presented at the international conference on Advances in Biological and Medical Sciences, Singapore, 15–16 July 2012Google Scholar
  194. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012b) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot:217037.  https://doi.org/10.1155/2012/217037CrossRefGoogle Scholar
  195. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92Google Scholar
  196. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone Mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 5:483–489Google Scholar
  197. Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in selfnanoemulsifying pesticide delivery system. Colloids Surf A Physicochem Eng Asp 350:57–62CrossRefGoogle Scholar
  198. Sousa GF, Gomes DG, Campos EV, Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:12.  https://doi.org/10.3389/fenvs.2018.00012CrossRefGoogle Scholar
  199. Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579PubMedGoogle Scholar
  200. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33(8):1389–1402PubMedCrossRefGoogle Scholar
  201. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2013) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotech 8(3):133–137CrossRefGoogle Scholar
  202. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc., Massachusetts, p 781Google Scholar
  203. Taniguchi N (1974) On the basic concept of ‘nano-technology’, Proc Intl Conf Prod Eng Tokyo, Part II, Japan Society of Precision Engineering. http://nanodot.org/articles/01/06/04/1217257.shtml
  204. Thakur RK, Shirkot P (2017) Potential of biogold nanoparticles to control plant pathogenic nematodes. J Bioanal Biomed 9:220–222Google Scholar
  205. Tiwari DK, Dasgupta-Schubert N, Villasenor LM, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Stud 7:87–96Google Scholar
  206. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2(5):295–300CrossRefGoogle Scholar
  207. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177PubMedCrossRefGoogle Scholar
  208. Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181PubMedCrossRefGoogle Scholar
  209. Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219PubMedCrossRefGoogle Scholar
  210. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390PubMedPubMedCentralCrossRefGoogle Scholar
  211. Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS (2009) Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran Polym J 18(5):383–392Google Scholar
  212. Venugopal NVS, Sainadh NVS (2016) Novel polymeric nanoformulation of mancozeb– an eco-friendly nanomaterial. Int J Nanosci 15:1–6CrossRefGoogle Scholar
  213. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171–1177PubMedCrossRefPubMedCentralGoogle Scholar
  214. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235PubMedCrossRefPubMedCentralGoogle Scholar
  215. Wang X, Liu X, Chen J, Han H, Yuan Z (2014a) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal Pathogen. Carbon 68:798–806CrossRefGoogle Scholar
  216. Wang Y, Cui H, Sun C, Zhao X, Cui B (2014b) Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers. Nanoscale Res Lett 9(1):655.  https://doi.org/10.1186/1556-276X-9-655CrossRefPubMedCentralGoogle Scholar
  217. Wang YA, Li JJ, Chen H, Peng X (2002) Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 124(10):2293–2298PubMedCrossRefPubMedCentralGoogle Scholar
  218. Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2(3):40–44Google Scholar
  219. Warad HC, Ghosh SC, Thanachayanont C, Dutta J, Hilborn JG (2004) Highly luminescent manganese doped ZnS quantum dots for biological labelling. In Proceedings of international conference on smart materials (SMARTMAT-04), Chiang Mai, ThailandGoogle Scholar
  220. Weathers PJ, Zobel RW (1992) Aeroponics for the culture of organisms, tissues and cells. Biotechnol Adv 10:93–115PubMedCrossRefPubMedCentralGoogle Scholar
  221. Wight MM, Salazar CS, Demers JE, Clement DL, Rane KK, Crouch JA (2016) Sarcococca blight: use of whole-genome sequencing for fungal plant disease diagnosis. Plant Dis 100(6):1093–1100CrossRefGoogle Scholar
  222. Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid Exchange Envelope Penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16(2):1161–1172PubMedCrossRefPubMedCentralGoogle Scholar
  223. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126Google Scholar
  224. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331PubMedPubMedCentralCrossRefGoogle Scholar
  225. Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408PubMedPubMedCentralCrossRefGoogle Scholar
  226. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190PubMedCrossRefPubMedCentralGoogle Scholar
  227. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516CrossRefGoogle Scholar
  228. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39(9):9193–9201PubMedCrossRefPubMedCentralGoogle Scholar
  229. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759PubMedCrossRefPubMedCentralGoogle Scholar
  230. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monika Hajong
    • 1
  • Nongthombam Olivia Devi
    • 1
  • Manashi Debbarma
    • 1
  • Dipali Majumder
    • 1
  1. 1.School of Crop Protection, College of Post-Graduate Studies, Central Agricultural University (Imphal)UmiamIndia

Personalised recommendations