Advertisement

Nanopesticide: Future Application of Nanomaterials in Plant Protection

  • Setyowati Retno Djiwanti
  • Suresh Kaushik
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Crop and postharvest pests and diseases have significant impact on agricultural yield loss and farmers’ incomes. Farmers mostly use synthetic pesticides to manage pests to maximize crop yields, posing potential risks for workers, consumers, and the environments. Metal- and agrochemical-based nanopesticides were potentially less toxic alternative pesticides to conventional pesticides in plant protection, while essential oils and bioactive agent-based nanopesticides and/or control released formulation have potential for use in organic food production and sustainable agriculture. Nanoparticles and/or nanoemulsions including nanomatrices of delivery agents of metals, agrochemicals, essential oils, and bioactive agents in nanopesticide formulations have been synthesized and evaluated for their effectivity against pests and disease pathogens. Some researches of nanomaterials application in developing nanopesticides were reviewed, and their promising nanoformulation methods were highlighted to be considered for their sustainable innovation in the future development of effective, efficient, and safe nanopesticides.

Keywords

Nanomaterials Future application Crop pest and disease Management 

References

  1. Abbassy MA, Abdel-Rasoul MA, Nassar AMK, Soliman BSM (2017) Nematicidal activity of silver nanoparticles of botanical products against root-knot nematode, Meloidogyne incognita. Published online: 20 Nov 2017, 1–18,  https://doi.org/10.1080/03235408.2017.1405608CrossRefGoogle Scholar
  2. Abdellatif KF, Abdelfattah RH, MSM E-A (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iranian J Biotech 14:250–259CrossRefGoogle Scholar
  3. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal nanobionics: principles and applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore 61–87Google Scholar
  4. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269PubMedCrossRefGoogle Scholar
  5. Ahmed S, Ahmad M, Swami BL, Ikram S (2015) A review on plant extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28PubMedPubMedCentralCrossRefGoogle Scholar
  6. Akrachalanont P (2008) Preparation and evaluation of liposome containing colve oil. Silpakorn UnivGoogle Scholar
  7. Al-Askar AA, Hafez EE, Kabeil SA, Meghad A (2013) Bioproduction of silver-nanoparticles by Fusarium oxysporum and their antimicrobial activity against some plant pathogenic bacteria and fungi. Life Sci J 10(3):2470–2475Google Scholar
  8. Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446CrossRefGoogle Scholar
  10. Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB (2015) Regulatory aspects of nanotechnology in the agri/feed/ food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73(1):463–476PubMedCrossRefGoogle Scholar
  11. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8.  https://doi.org/10.1371/journal.pone.0053186PubMedPubMedCentralCrossRefGoogle Scholar
  12. ANNEX E (2018) Possible breakthroughs nanotech pesticides, pp E1–E6. file:///D:/SILVERNANO/FUTUREAPPLICATION/NANOAGROCHEM/WBCSD%20Co-op%20Report_Annex%20E.pdf. Was accessed in 2018Google Scholar
  13. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates-A review. J Control 128(3):185–199Google Scholar
  14. Arumugam G, Velayutham V, Shanmugavel S, Sundaram J (2015) Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci 6(3):445–450.  https://doi.org/10.1007/s13204-015-0446-2CrossRefGoogle Scholar
  15. Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008a) Toxicity of silver nanoparticles in Zebrafish models. Nanotechnology 19:255102PubMedCrossRefPubMedCentralGoogle Scholar
  16. Asharani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008b) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefGoogle Scholar
  17. Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15.  https://doi.org/10.1007/s10340-017-0898-0CrossRefGoogle Scholar
  18. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefPubMedPubMedCentralGoogle Scholar
  19. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  20. Babu RB, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8, 30 pp.  https://doi.org/10.1186/2194-0517-2-8CrossRefPubMedPubMedCentralGoogle Scholar
  21. Balfas R, Mardiningsih TL (2016) Effect of essential oils on mortalities and oviposition detterents of Crocidolomia pavonana F. Buletin Penelitian Tanaman Rempah dan Obat 27(1):85–92. [In Indonesian, abstract in English]CrossRefGoogle Scholar
  22. Bansal P, Duhan JS, Gahlawat SK (2014) Biogenesis of nannoparticles: a review. African J Biotech 13:2778–2785CrossRefGoogle Scholar
  23. Baric TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258CrossRefGoogle Scholar
  24. Batish DR, Setia N, Singh HP, Kohli RK (2006) Chemical composition and phytotoxicity of volatile essential oil from intact and vallen leaves of Eucaliptus citriodora. Z Natirforsh 61:465–471CrossRefGoogle Scholar
  25. Bergeson LL (2010a) Nanosilver: US EPA’s pesticide office considers how best to proceed. Envir Qual Manage 19(3):79–85CrossRefGoogle Scholar
  26. Bergeson LL (2010b) Nanosilver pesticide products: what does the future hold? Envir Qual Manage 19(4):73–82CrossRefGoogle Scholar
  27. Bhattacharyya A, Bhaumik A, Rani PU, Mandals S, Epidi TT (2010) Nano-particles-a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493Google Scholar
  28. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nano-biotechnology. Springer, Cham, pp 307–319CrossRefGoogle Scholar
  29. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC (2014) Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach: review article. Evid Based Complement Alternat Med 2014:651593, 14 pages. https://www.hindawi.com/journals/ecam/2014/651593/.  https://doi.org/10.1155/2014/651593CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bouwmeester H, Deekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECGS, Wijnhoven WP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnogies in food production. Regul Toxicol Pharacol 53:52–62CrossRefGoogle Scholar
  31. Bragg PD, Rainnie DJ (1974) The effect of silver ions on the respiratory chains of Escherichia coli. Can J Microbiol 20:883–889PubMedCrossRefGoogle Scholar
  32. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356PubMedCrossRefGoogle Scholar
  33. Bryaskova PDR, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4(4):185–191PubMedPubMedCentralCrossRefGoogle Scholar
  34. Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J (2015) Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Int J Pest Manag 61(1):80–89CrossRefGoogle Scholar
  35. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253.  https://doi.org/10.1016/j.ijfoodmicro.2004.03.022CrossRefPubMedGoogle Scholar
  36. Campolo O, Cherif A, Palmeri V (2017) Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: chemical properties and biological activity. Sci Rep 7:13036. https://www.nature.com/articles/s41598-017-13413-0#Sec2PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK (2012a) DNA-tagged nanogold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr J Biotechnol 11:9295–9301CrossRefGoogle Scholar
  38. Chakravarthy AK, Chandrashekharaiah KSB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012b) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6:271–281Google Scholar
  39. Chandra JH, Raj LFAA, Namasivayam SKR, Bharani RSA (2013) Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. Proceedings of the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, July 24–26, 2013, Chennai, pp 387–390Google Scholar
  40. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  41. Chen L, Zhang D, Chen J, Zhou H, Wan H (2006) The use of CTAB to control the size of copper nanoparticles and the concentration of alkylthiols on their surfaces. Mater Sci Eng A 415:156–161CrossRefGoogle Scholar
  42. Chen Q, Xu S, Wu T, Guo J, Sha S, Zheng X, Yu T (2014) Effect of citronella essential oil on the inhibition of postharvest Alternaria alternate in cherry tomato. J Sci Food Agric 94(12):2441–2447PubMedCrossRefGoogle Scholar
  43. Chiellini E, Corti A, D'Antone S, Solaro R (2003) Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci 28:963–1014CrossRefGoogle Scholar
  44. Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249.  https://doi.org/10.1146/annurev.phyto.40.032602.130045CrossRefPubMedGoogle Scholar
  45. Chhipa H (2017a) Nanopesticide: current status and future possibilities. Agri Res Tech: Open Access J 5(1).  https://doi.org/10.19080/ARTOAJ.2017.05.555651
  46. Chhipa H (2017b) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:1, 15–22CrossRefGoogle Scholar
  47. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588.  https://doi.org/10.1021/es703238hCrossRefPubMedGoogle Scholar
  48. Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P, Saharan V (2017) Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In: Prasad R et al (eds) Nanotechnology: an agricultural paradigm, pp 227–244, ISBN 978-981-10-4572-1, ISBN 978-981-10-4573-8 (eBook).  https://doi.org/10.1007/978-981-10-4573-8CrossRefGoogle Scholar
  49. Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19(2):131–151Google Scholar
  50. Cimanga K, Kambu K, Tona L, Apers S, de Bruyne T, Hermans N, Totte J, Pieters L, Vlietinck AJ (2002) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republik of Congo. J Ethnopharmacol 79:213–220PubMedCrossRefGoogle Scholar
  51. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field Scenario. PLoS One 8(2):e57189. 26 pp. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584129/.  https://doi.org/10.1371/journal.pone.0057189CrossRefPubMedPubMedCentralGoogle Scholar
  52. Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1461PubMedCrossRefGoogle Scholar
  53. Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515CrossRefGoogle Scholar
  54. Cromwell WA, Joopil Y, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in Bermudagrass. J Nematol 46(3):261–266PubMedPubMedCentralGoogle Scholar
  55. Cui H, Zhao X, Sun Ch, Cui B (2018) Application of nanoformulation of agrochemical in crops production in China: Progress and prospects. 4th International Conference on Nanotek & Expo. J Nanomed Nanotechnol, DOI:  https://doi.org/10.4172/2157-7439.S1.017. https://www.omicsonline.org/proceedings/application-of-nanoformulation-of-agrochemical-in-crops-production-in-china-progress-and-prospects-24464.html
  56. Das RT, Sarma S, Brar SK, Verma M (2014) Nanoformulation of insecticides - novel products. J Biofertil Biopestic 5:1.  https://doi.org/10.4172/2155-6202.1000e120CrossRefGoogle Scholar
  57. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105CrossRefGoogle Scholar
  58. Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256CrossRefGoogle Scholar
  59. Dhekney S, Li A, Anaman M, Dutt M (2007) Genetic transformation of embryogenic cultures and recovery of transgenic plants in Vitis vinifera, Vitis rotundifolia and Vitis hybrids. Acta Hort 738:743–748CrossRefGoogle Scholar
  60. Djiwanti SR, Supriadi (2012) Nematicidal activity of some medicinal and aromatic plants extracts against Meloidogyne sp. on ginger. Buletin Penelitian Tanaman Rempah dan Obat 23(2):153–160, ISBN: 0215–0824 (In Indonesian, abstract in English)Google Scholar
  61. Duarte JL, Amado JRR, Oliveira AEMFM, Cruz RAS, Ferreira AM (2015) Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev Bras Farmacogn 25:189–192.  https://doi.org/10.1016/j.bjp.2015.02.010. Get rights and contentCrossRefGoogle Scholar
  62. Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108CrossRefGoogle Scholar
  63. Duran N, Marcato PD (2013) Nanobiotechnology perspective: role of nanotechnology in the food industry. Int J Food Sci Technol 48(6):1127–1134CrossRefGoogle Scholar
  64. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389CrossRefGoogle Scholar
  65. Ebadollahi A (2011) Iranian plant essential oils as sources of natural insecticide agents. Int J Biol Chem 53:266–290Google Scholar
  66. Ehsanfar S, Modarres-Sanavy SA (2004) Crop protection by seed coating. Commun Agric Appl Biol Sci 70:225–229Google Scholar
  67. Elaissi A, Rouis Z, Ben Salem NA, Mabrouk S, ben Salem Y (2012) Chemical composition of 8 Eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement Altern Med 12:18.  https://doi.org/10.1186/1472-6882-12-81CrossRefGoogle Scholar
  68. Elgengaihi S, Mossa ATH, Refaie AA, Aboubaker D (2016) Hepatoprotective efficacy of Cichorium intybus L. extract against carbon tetrachloride-induced liver damage in rats. J Dietary Suppl 13:570–584CrossRefGoogle Scholar
  69. El-Shazly MA, Attia YA, Kabil FF, Anis E, Hazman M (2017) Inhibitory effects of salicylic acid and silver nanoparticles on potato virus Y- infected potato plants in Egypt. Middle East J Agric Res 6:835–848Google Scholar
  70. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, PecharromÆn C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505–701Google Scholar
  71. Fernandes CP, de Almeida FB, Silveira AN, Gonzalez MS, Mello CB (2014) Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnol 12:22. 20 pp. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032567/.  https://doi.org/10.1186/1477-3155-12-22CrossRefGoogle Scholar
  72. Flores-Cespedes F, Figueredo-Flores CI, Daza-Fernandez I, Vidal-Pena F, VillafrancaSanchez M, Fernandez-Perez M (2012) Preparation and characterization of imidacloprid lignin-polyethylene glycol matrices coated with ethylcellulose. J Agric Food Chem 60:1042–1051PubMedCrossRefGoogle Scholar
  73. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20CrossRefGoogle Scholar
  74. Gajbhiye M, Kesharwani J, Ingle A (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386PubMedCrossRefGoogle Scholar
  75. Garg J, Kumar P (2014) Emerging trends in nanoemulsions design and therapeutics -a review. Asian J Pharm Sci Clin Res 2:1–16Google Scholar
  76. Gavanji S, Shams M, Shafagh N, Jalali Zand A, Larki B, Doost Mohammadi M, Taraghian AH, Niknezhad SV (2012) Destructive effect of silver nanoparticles on biocontrol agent fungi Trichoderma viride and T harzianum. CJASR 1:83–90Google Scholar
  77. Gholami-Shabani MH, Gholami-Shabani Z, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M (2017) Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. In: Prasad R et al (eds) Nanotechnology an agricultural paradigm. Springer International, pp 133–175Google Scholar
  78. Ghormade V, Desphande MV, Paknikar KM (2011) Perspective for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803PubMedCrossRefGoogle Scholar
  79. Ghosh V, Mukherjee A, Chandrasekaran N (2013) Formulation and characterization of plat essential oil based nanoemulsion: evaluation of its larvicidal activity Aedes aegypti. Asian J Chem 25:S321–S323CrossRefGoogle Scholar
  80. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792PubMedCrossRefGoogle Scholar
  81. Gohil J, Bhattacharya A, Ray P (2006) Studies on the crosslinking of poly (vinyl alcohol). J Polym Res 13:161–169CrossRefGoogle Scholar
  82. Goldshtein R, Jaffe I, Tulbovich B (2005) Hydrophilic dispersions of nanoparticles of inclusion complexes of amorphous compounds. Patent number US 20050249786, A120051110Google Scholar
  83. Gonzalez JOW, Gutierrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control-characterization and biological properties. Chemosphere 100:130–138CrossRefGoogle Scholar
  84. Gortzi O, Lalas S, Tsaknis J, Chinou I (2007) Enhanced bioactivity of Citrus lemon (Lemon Greek cultivar) extracts, essential oil and isolated compounds before and after encapsulation in liposomes. Planta Med 73:184CrossRefGoogle Scholar
  85. Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16(1):12311234CrossRefGoogle Scholar
  86. Guan H, Chi D, Yu J, Li H (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soybean fields. Crop Prot 29:942–946CrossRefGoogle Scholar
  87. Guillette LJ, Iguchi T (2012) Life in a contaminated world. Science 337(6102):1614–1615.  https://doi.org/10.1126/science.1226985CrossRefPubMedGoogle Scholar
  88. Gutierrez JM, Gonzalez C, Maestro A, Solé I, Pey CM (2008) Nanoemulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface 13:245–251CrossRefGoogle Scholar
  89. Gupta A, Eral HB, Hattona TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–2841PubMedCrossRefGoogle Scholar
  90. Guzman M, Dile J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biol Eng 2(3):104–111Google Scholar
  91. Hamdi SH, Hedjal-Chebheb M, Kellouche A, Khouja ML, Boudabous A, Jemaa JMB (2015) Management of three pest's population strains from Tunisia and Algeria using Eucalyptus essential oils. Ind Crop Prod 74:551–556CrossRefGoogle Scholar
  92. Han X, Chen S, Hu X (2009) Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination 240:21–26CrossRefGoogle Scholar
  93. Handique GK, Handique AK (2009) Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. J Environ Biol 30(2):299–302PubMedPubMedCentralGoogle Scholar
  94. Hassan MEM, Zawam HS, SEM E-N, Desoukey AF (2016) Comparison study between silver nanoparticles and two nematicides against Meloidogyne incognita on tomato seedlings. Plant Pathol J 15:144–151CrossRefGoogle Scholar
  95. Ho SH, Cheng LPL, Sim KY, Tan HTW (1994) Potential of cloves (Syzygium aromaticum) Merr and Perry as a grain protecting against Tribolium castaneum (Herbst) and Sitophilus zeamays Motsch. Postharvest Biol Technol 4:179–183CrossRefGoogle Scholar
  96. Huang Q, Lakshman DK (2010) Effect of clove oil on plant pathogenic bacteria and bacterial wilt of tomato and geranium. J Plant Pathol 92(3):701–707Google Scholar
  97. Isman MB (2000) Plant essential oil for pest and disease management. Crop Prot 19:603–608CrossRefGoogle Scholar
  98. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66PubMedCrossRefGoogle Scholar
  99. Isiklan N (2004) Controlled release of insecticide carbaryl from crosslinked carboxymethylcellulose beads. Fre Environ Bull 13:537–544Google Scholar
  100. Jain D, Kothari SL (2014) Green synthesis of silver nanoparticles and their application in plant virus inhibition. J Mycol Plant Pathol 44:21–24Google Scholar
  101. Jiang ZL, Akhtar Y, Zhang X, Bradbury R, Isman MB (2012) Insecticidal and feeding deterrent activities of essential oils in the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). J Appl Entomol 136(3):191–202.  https://doi.org/10.1111/j.1439-0418.2010.01587.xCrossRefGoogle Scholar
  102. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043PubMedCrossRefGoogle Scholar
  103. Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279CrossRefGoogle Scholar
  104. Johnston HJ, Hutchison G, Christensen FM (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346. https://www.ncbi.nlm.nih.gov/pubmed/20128631.  https://doi.org/10.3109/10408440903453074CrossRefPubMedGoogle Scholar
  105. Juhaeti T, Syarif F, Hidayati N (2005) Inventarisasi tumbuhan potential untuk fitoremediasi lahan dan air terdegradasi penambangan emas. Biodiversitas 6(1):31–33CrossRefGoogle Scholar
  106. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. 13 pp. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644784.  https://doi.org/10.3389/fchem.2015.00064CrossRefPubMedPubMedCentralGoogle Scholar
  107. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867CrossRefGoogle Scholar
  108. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235PubMedCrossRefGoogle Scholar
  109. Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7:1863–1869CrossRefGoogle Scholar
  110. Katooli N, Maghsodlo R, Honari H, Razavi SE (2012) Fungistatic activity of essential oil of thyme and eucalyptus of post harvest and soil borne plant pathogenic fungi. Glob J Med Plant 1(1):1–4Google Scholar
  111. Kaushik SC, Djiwanti SR (2017) Nanotechnology for enhancing crop productivity. In: Prasad R et al (eds) Nanotechnology an agricultural paradigm. Sringer International, pp 249–262Google Scholar
  112. Khalil MS (2014) Bright future with nematicidal phytochemicals. Biol Med J 6(2):2–3Google Scholar
  113. Khan MR, Majid S, Mohiddin FA, Khan N (2011) A new bioprocess to produce low cost powder formulations of biocontrol bacteria and fungi to control fusarial wilt and root-knot nematode of pulses. Biol Control 57:130–140CrossRefGoogle Scholar
  114. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231CrossRefGoogle Scholar
  115. Khodakovsky A, Schroder P, Sweldens W (2000) Progressive geometry compression, in Siggraph, Computer Graphics Proceedings, pp 271–278Google Scholar
  116. Khot LR, Shankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  117. Kim HS, Kang HS, Chu GJ, Byun HS (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18CrossRefGoogle Scholar
  118. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kok FN, Wilkins RM, Cain RB, Arica MY, Alaeddinoglu G, Hasirci V (1999) Controlled release of aldicarb from lignin loaded ionotropic hydrogel microspheres. J Microencapsul 16:613–623PubMedCrossRefGoogle Scholar
  120. Kuzma J, Verhage P (2006) Nanotechnology in agriculture and food production: anticipated applications. Available online at http://www.nanotechproject.org/file_download/files/PEN4_AgFood.pdf
  121. Lai F, Wissing SA, Muller RH, Fadda AM (2006) Artemisia arborescens L. essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7:1–9CrossRefGoogle Scholar
  122. Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462PubMedCrossRefPubMedCentralGoogle Scholar
  123. Laquale S, Avato P, Argentieri MP, Bellardi MG, D’Addabbo T (2018) Nematotoxic activity of essential oils from Monarda species. J Pest Sci:1–11Google Scholar
  124. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30. 17 pp. https://www.ncbi.nlm.nih.gov/pubmed/21812950.  https://doi.org/10.1186/1477-3155-9-30CrossRefGoogle Scholar
  125. Lee YH, Choi CW, Kim SH, Yun JG, Chang SW, Kim SY, Hong JK (2012) Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol J 28(1):32–39CrossRefGoogle Scholar
  126. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 8:270974, 16 pages.  https://doi.org/10.1155/2011/270974CrossRefGoogle Scholar
  127. Lim D, Roh JY, Eom HJ, Hyun JW, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592PubMedCrossRefPubMedCentralGoogle Scholar
  128. Liolios C, Gortzi O, Lalas S, Tsaknis J, Chinou I (2009) Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem 112:77–83CrossRefGoogle Scholar
  129. Liu F, Wen LX, Li ZZ, Yu W, Sun HY (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275CrossRefGoogle Scholar
  130. Liu X, Chen Q, Wang Z, Xie L, Xu Z (2008a) Allelopathic effect of essential oil from Eucaliptus grandis x E urophylla on pathogenic fungi and pest insects. For China 3:232–236Google Scholar
  131. Liu Y, Tong Z, Prud’homme RK (2008b) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812PubMedCrossRefGoogle Scholar
  132. Loha KM, Shakil NA, Kumar J, Singh MK, Srivastava C (2012) Bio-efficacy evaluation of nanoformulation of β-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J Environ Sci Health 47(7):687691CrossRefGoogle Scholar
  133. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924PubMedCrossRefGoogle Scholar
  134. Lv G, Wang F, Cai W, Zhang X (2014) Characterization of the addition of lipophilic Span 80 to the hydrophilic Tween 80-stabilized emulsions. Colloids Surf A Physicochem Eng Asp 447:8–13.  https://doi.org/10.1016/j.colsurfa.2014.01.066CrossRefGoogle Scholar
  135. Mahdi ES, Sakeena MH, Abdulkarim MF, Abdullah GZ, Sattar MA, Noor AM (2011) Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Des Devel Ther 5:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  136. Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10(Suppl 1):S11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059459/.  https://doi.org/10.1186/1475-2875-10-S1-S11CrossRefPubMedPubMedCentralGoogle Scholar
  137. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492PubMedCrossRefPubMedCentralGoogle Scholar
  138. Mariana M, Noveriza R (2013) Potensi minyak atsiri untuk mengendalikan Potyvirus pada tanaman nilam (Potency of essential oils to control Potyvirus on patchouli). Jurnal Fitopatologi Indonesia 9(2):52–58. (in Indonesian, abstract in English)CrossRefGoogle Scholar
  139. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2014) Advanced methods of plant disease detection: a review. Agron Sustain Dev 35:1–25CrossRefGoogle Scholar
  140. Masarovičová E, Kráľová K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20:9–22Google Scholar
  141. Masarovičová E, Kráľová K, Zinjarde SS (2014) Metal nanoparticles in plants. Formation and action. In: Pessarakli M (ed) Handbook of plant and crop physiology, 3rd edn. CRC Press, Boca Raton, pp 683–731Google Scholar
  142. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18(41):635–666CrossRefGoogle Scholar
  143. McClements DJ (2012a) Edible delivery systems for nutraceuticals: designing functional foods for improved health. Ther Deliv 3(7):801–803PubMedCrossRefGoogle Scholar
  144. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729CrossRefGoogle Scholar
  145. Merkt F (2008) Interactions of nanoparticles and surfaces. Doctoral dissertation, University of Konstanz Dissertation. URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-53877; http://kops.uni-konstanz.de/handle/123456789/5263
  146. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100(2):140–150PubMedCrossRefGoogle Scholar
  147. Mohan M, Haider SZ, Andola HC, Purohit VP (2011) Essential oils as green pesticides: for sustainable agriculture. Res J Pharm Biol Chem Sci 2(4):100–106. https://www.rjpbcs.com/pdf/2011_2(4)/[12].pdfGoogle Scholar
  148. Mohanpuria P, Rana NK, Yadav SK (2007) Biosynthesis of nanoparticles, technological concepts and future applications. J Nanopart Res 7:9275–9280Google Scholar
  149. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893CrossRefGoogle Scholar
  150. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanobiotechnol 16(2346):2353Google Scholar
  151. Mossa ATH, Abdelfattah NAH, Mohafrash SMM (2017) Nanoemulsion of camphor (Eucalyptus globulus) essential oil, formulation, characterization and insecticidal activity against wheat weevil, Sitophilus granarius. Asian J Crop Sci 9:50–62. https://scialert.net/abstract/?doi=ajcs.2017.50.62CrossRefGoogle Scholar
  152. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776PubMedCrossRefGoogle Scholar
  153. Nair R, Kumar DS (2012) Plant diseases-control and remedy through nanotechnology. In: Tuteja N, Gill S (eds) Crop improvement under adverse conditions. Springer, New York, pp 231–243Google Scholar
  154. Nam D, Lee B, Eom I, Kim P, Yeo M (2014) Uptake and bioaccumulation of titanium- and silver-nanoparticles in aquatic ecosystems. Mol Cell Toxicol 10:9–17CrossRefGoogle Scholar
  155. Navarro E, Piccapietra F, Wagner B (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964PubMedCrossRefPubMedCentralGoogle Scholar
  156. Nel A, Xia T, Madler L, Li N (2003) Toxic potential of materials at the nanolevel. Science 3:622–627Google Scholar
  157. Nirmala MJ, Nagarajan R (2017) Recent research trends in fabrication and applications of plant essential oil based nanoemulsions. J Nanomed Nanotechnol 08(02)., 10 pp).  https://doi.org/10.4172/2157-7439.1000434
  158. Ntalli NG, Ferrari F, Giannakou I, Menkissoglu-Spiroudi U (2011) Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag Sci 67(3):341–351PubMedCrossRefGoogle Scholar
  159. Ocsoy I, Paret ML, Ocsoy MA (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980PubMedPubMedCentralCrossRefGoogle Scholar
  160. Oldenburg SJ (2017) Silver nanoparticles: properties and applications. Merck KGaA, Darmstadt, Germany and/or its affiliates. 14 pp. https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/silver-nanoparticles.html
  161. Oldenburg SJ, Saunders AE (2018) Silver nanomaterials for biological applications nanoComposix, Inc., San Diego, California 92,111, Sigma-Aldrich ® https://www.sigmaaldrich.com/technical-documents/articles/materials-science/silver-nanomaterials.html
  162. Ozdemir E, Gozel U (2017) Efficiency of some plant essential oils on root-knot nematode Meloidogyne incognita. J Agricul Sci Technol A 7(3):178–183.  https://doi.org/10.17265/2161-6256/2017.03.005CrossRefGoogle Scholar
  163. Papp I, Sieben C, Ludwig K, Roskamp M, Böttcher C, Schlecht S (2010) Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6(24):2900–2906PubMedCrossRefPubMedCentralGoogle Scholar
  164. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3):228–236PubMedCrossRefPubMedCentralGoogle Scholar
  165. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. J Plant Pathol 22:295302Google Scholar
  166. Patel RM, Jasrai YT (2015) Antifungal potency of Eucaliptus globules Labill essential oil against important plant pathogenic fungi. CIBTech. J Microbiol 4(1):42–52Google Scholar
  167. Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol App Sci 3:71–84Google Scholar
  168. Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21CrossRefGoogle Scholar
  169. Peng S, Zou L, Liu W, Gan L, Liu W, Liang R, Liu C, Niu J, Cao Y, Liu Z (2015) Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection–dynamic high-pressure microfluidization method. J Food Prot 78:22–30PubMedCrossRefGoogle Scholar
  170. Pepper D (2008) The toxic consequences of the green revolution. 4 pp. US News. https://www.usnews.com/news/world/articles/2008/07/07/the-toxic-consequences-of-the-green-revolution
  171. Pepperman AB, Kuan CW, Mc Combs C (1991) Alginate controlled release formulations of metribuzin. J Control Release 17:105–112CrossRefGoogle Scholar
  172. Perlatti B, Bergo PLS, Fernandes da Silva MFG, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Trdan S (ed) Insecticides: development of safer and more effective technologies. InTech, Rijeka. http://www.intechopen.com/books/insecticides-development-of-safer-and-more-effective-technologies/polymeric-nanoparticle-based-insecticides-a-controlled-release-purpose-for-agrochemicalsGoogle Scholar
  173. Prakash A, Rao J (1997) Botanical pesticides in Agriculture. CRC Lewis Publishers, Boca Raton\New York\London\Tokyo. 480 ppGoogle Scholar
  174. Prasad NMN, Bhat SS, Sreenivasa MY (2010) Antifungal activity of essential oils against Phomopsis azadirachtae the causative agent of die back disease of neem. J Agric Techno 6:127–133Google Scholar
  175. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-3Google Scholar
  176. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)Google Scholar
  177. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363PubMedPubMedCentralGoogle Scholar
  178. Prasad R, Kumar V, Kumar M, Wang S (2018) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656
  179. Prasad R, Kumar V, Kumar M, and Choudhary D (2019) Nanobiotechnology in Bioformulations. Springer International Publishing (ISBN 978-3-030-17061-5) https://www.springer.com/gp/book/9783030170608
  180. Puebla RA, Dos Santos DS Jr, Aroca RF (2004) Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 129:1251–1256CrossRefGoogle Scholar
  181. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700PubMedCrossRefGoogle Scholar
  182. Qian K, Shi TY, Tang T, Zhang SL, Liu XL (2011) Preparation and characterization of nanosized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173(1):51–57CrossRefGoogle Scholar
  183. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465PubMedCrossRefGoogle Scholar
  184. Ragaei M, Sabry AH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545Google Scholar
  185. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of anti microbials. Biotechnol 27:76–83Google Scholar
  186. Rajabi F, Karimi N, Saidi MR, Primo A, Varma RS, Luque R (2012) Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium. Adv Synth Catal 453(9):1707–1711.  https://doi.org/10.1002/adsc.201100630CrossRefGoogle Scholar
  187. Rajendran S, Sriranjini V (2008) Plant products as fumigants for stored-product insect control. J Stored Prod Res 44:126–135CrossRefGoogle Scholar
  188. Ramadass M, Thiagarajan P (2017) Effective pesticide nanoformulations and their bacterial degradation. 14th ICSET-2017. IOP Conf. Series: Materials Science and Engineering 263: 022050, IOP Publishing. opscience.iop.org/article/10.1088/1757-899X/263/2/022050/pdf
  189. Rashidzadeh A, Olad A, Salari D, Hejazi MJ (2014) On the encapsulation of natural pesticide using polyvinyl alcohol/alginate–montmorillonite nanocomposite for controlled release application. Polym Eng Sci 54(12):2707–2714.  https://doi.org/10.1002/pen.23823CrossRefGoogle Scholar
  190. Ravi J, Regmi R, Simon SL, Lal AA (2014) Efficacy of Eucalyptus essential oil against leaf spot (Alternaria solani) of Solanum melongena L. ARPN J Agric Biol Sci 9(9):320–322Google Scholar
  191. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940CrossRefPubMedPubMedCentralGoogle Scholar
  192. Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72:590–594CrossRefGoogle Scholar
  193. Rudzinski WE, Chipuk T, Dave AM, Kumbar SG, Aminabhavi TM (2003) pH sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J App Pol Sci 87:394–403CrossRefGoogle Scholar
  194. Sabbour MM, Abd El-Aziz SE (2015) Efficacy of nano-diatomaceous earth against red flour beetle, Tribolium castaneum and confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae) under laboratory and storage conditions. Bull Environ Pharmacol Life Sci 4:54–59Google Scholar
  195. Sabbour MM (2012) Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J Novel Appl Sci 1:103–108Google Scholar
  196. Sagiri SS, Behera B, Sudheep T, Pal K (2012) Effect of composition on the properties of tween-80–span-80-based organogels. Des Monomers Polym 15:253–273CrossRefGoogle Scholar
  197. Sahab AF, Waly AI, Sabbour MM, Lubna SN (2015) Synthesis, antifungal and insecticidal potential of chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J Chem Tech Res 8:589–598Google Scholar
  198. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya P, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64(31):6148–6155.  https://doi.org/10.1021/acs.jafc.6b02239CrossRefPubMedPubMedCentralGoogle Scholar
  199. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683PubMedCrossRefPubMedCentralGoogle Scholar
  200. Saharan V, Pal A (2016) Chitosan based nanomaterials in plant growth and protection. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-3601-6_3CrossRefGoogle Scholar
  201. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sakeena MHF, Elrashid SM, Munawar AS, Azmin MN (2011) Effects of oils and drug concentrations on droplet size of palm oil esters (POEs) nanoemulsion. J Oleo Sci 60:155–158PubMedCrossRefGoogle Scholar
  203. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017) Agricultural nanotechnology: concepts, benefits, and risks. In: Nanotechnology an agricultural paradigm. Springer, Singapore, pp 1–18Google Scholar
  204. Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39Google Scholar
  205. São Pedro A, Santo IE, Silva C, Detoni C, Albuquerque E (2013) The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education, vol 2, pp 1364–1374, FORMATEXGoogle Scholar
  206. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspension: emerging novel agrochemical formulations. In: Isaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Dordrecht, pp 1–32Google Scholar
  207. Scott N, Chen H (2012) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 8(6):340–343CrossRefGoogle Scholar
  208. Šegvic Klaric M, Kosalec I, Mastelic J, Pieckova E, Pepeljnak S (2007) Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett Appl Microbiol 44(1):36–42PubMedCrossRefGoogle Scholar
  209. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar RK, Ali M (2007) Formulation development and optimization using nanoemulsion technique: a technical note. AAPS Pharm Sci Tech 8(2):E12–E17. (Article 28). https://www.ncbi.nlm.nih.gov/pubmed/17622106.  https://doi.org/10.1208/pt0802028CrossRefGoogle Scholar
  210. Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GhN (2015) Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. King Saud University Arabian Journal of Chemistry. 6 pp. www.ksu.edu.sa; www.sciencedirect.com; https://core.ac.uk/download/pdf/82691241.pdf
  211. Shakil NA, Singh MK, Pandey A, Kumar J, Parmar VS, Singh MK, Pandey RP, Watterson AC (2010) Development of poly (Ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J Macromolec Sci, Part A: Pure App Chem 47:241–247.  https://doi.org/10.1080/10601320903527038CrossRefGoogle Scholar
  212. Shankar SS, Ahmad A, Sastry M (2003) Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnol Prog 19:1627–1631PubMedCrossRefGoogle Scholar
  213. Sharma H, Dhirta B, Shirkot P (2017) Evaluation of biogenic iron nanoformulations to control Meloidogyne incognita in okra. Int J Chem Stud 5(5):1278–1284Google Scholar
  214. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  215. Shi WJ, Shi WW, Gao SY, Lu YT, Cao YS, Zhou P (2010) Effects of nanopesticide chlorfenapyr on mice. Toxicol Environ Chem 92:1901–1907CrossRefGoogle Scholar
  216. Sikkema J, De Bont J, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  217. Silva WJ, Doria GAA, Maia RT, Nunes RS, Carvalho GA, Blank AF, Alves PB, Marcal RM, Cavalcanti S (2008) Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol 99:3251–3255PubMedCrossRefGoogle Scholar
  218. Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotech 5:1–5CrossRefGoogle Scholar
  219. Singh D, Kumar A, Singh AK, Tripathi HS (2013) Induction of resistence in field pea against rust disease through various chemicals/ micronutrients and their impact on growth and yield. Plant Pathol J 12:36–49CrossRefGoogle Scholar
  220. Siva C, Kumar MS (2015) Pesticidal activity of eco-friendly synthesized silver nanoparticles using Aristolochia indica extract against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Int J Adv Scient Tech Res 2:197–226Google Scholar
  221. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloids Interface Sci 10:102–110CrossRefGoogle Scholar
  222. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182PubMedCrossRefGoogle Scholar
  223. Song MR, Cui SM, Gao F, Liu YR, Fan CL (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37(3):258–260CrossRefGoogle Scholar
  224. Su YC, Ho CL, Wang IC, Chang ST (2006) Antifungal activities and chemical compositions of essential oils from leaves of four Eucalyptus. Taiwan J For Sci 21(1):49–61. https://www.researchgate.net/publication/228368888_Antifungal_activities_and_chemical_compositions_of_essential_oils_from_leaves_of_four_eucalyptsGoogle Scholar
  225. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRefGoogle Scholar
  226. Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito-control – a review. J Am Mosq Control Assoc 7:210–237PubMedGoogle Scholar
  227. Suruyavathana M, Usha V, Shanthanayaki M (2010) Studies of phytochemical analysis and antioxidant activity of selected medicinal plants from Kolli hills. J Pharm Res 2:260–262Google Scholar
  228. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedCrossRefGoogle Scholar
  229. Taha EH (2016) Nematicidal effects of silver nanoparticles on root-knot nematodes (Meloidogyne incognita) in laboratory and screenhouse. J Plant Prot Path Mansoura Univ 7(5):333–337Google Scholar
  230. Taha EH, Abo-Shady NM (2016) Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. Int J Zool Res 12:47–50CrossRefGoogle Scholar
  231. Taniguchi N (1974) On the basic concept of ‘nano-technology’. Proceedings of the International Conference on Production Engineering Part II, pp 18–23. Tokyo: Japan Soc Precision EngineeringGoogle Scholar
  232. Thakur RK, Shirkot P (2017) Potential of biogold nanoparticles to control plant pathogenic nematodes. J Bioanal Biomed 9(4):220–222.  https://doi.org/10.4172/1948-593X.1000182CrossRefGoogle Scholar
  233. Thurman KG, Gerba CHP (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit rev. Environ Control 18:295–315Google Scholar
  234. Toure A, Xiaoming Z, Jia C, Zhijian D (2007) Microencapsulation and oxidative stability of ginger essential oil in maltodextrin/whey protein isolate (md/wpi). Int J Dairy Sci 2(4):387–392CrossRefGoogle Scholar
  235. USEPA (2011) Minimum risk pesticides. Pesticides: Regulating Pesticides under FIFRA section 25(b), 3 pp. http://www.epa.gov/pesticides/biopesticides/regtools/25b_list.htm; https://www.ctahr.hawaii.edu/uhmg/Oahu/downloads/MinimumRiskPesticides.pdf
  236. Van SN, Minh HD, Anh DN (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2(4):289–294CrossRefGoogle Scholar
  237. Veit S, Wörle JM, Nürnberger T, Koch W, Seitz HU (2001) A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol 127:832–841PubMedPubMedCentralCrossRefGoogle Scholar
  238. Venugopal NV, Sainadh NV (2016) Novel polymeric nanoformulation of mancozeb-an eco-friendly nanomaterial. Int J Nanosci 15(4):16500–16,516CrossRefGoogle Scholar
  239. Verano-Braga T, Miethling-Graff R, Wojdyla K (2014) Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8:2161–2175PubMedCrossRefGoogle Scholar
  240. Walker GW, Kookana RS, Smith NE, Kah M, Doolette CL, Reeves PT, Lovell W, Anderson DJ, Turney TW, Navarro DA (2017) Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. J Agric Food Chem 66(26):6480–6486.  https://doi.org/10.1021/acs.jafc.7b02373CrossRefPubMedPubMedCentralGoogle Scholar
  241. Wang C, Zhang J, Chen H, Fan Y, Shi Z (2010) Antifungal activity of eugenol against Botrytis cinerea. Tropical Plant Pathol 35(3):137–143CrossRefGoogle Scholar
  242. Wibowo D, Zhao CX, Peters BC, Middelberg AP (2014) Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 62(52):12504–12511PubMedCrossRefGoogle Scholar
  243. Williams D (2002) Medical technology: how small we can go? Med. Device Tech 4:7–9Google Scholar
  244. Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Mooyoung J, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764Google Scholar
  245. Xia ZK, Ma QH, Li SY, Zhang DQ, Cong L, Tian YL, Yang RY (2016) The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect 49:182–188PubMedCrossRefPubMedCentralGoogle Scholar
  246. Xu L, Liu Y, Bai R, Chen C (2010) Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Applied Chem 82:349–372CrossRefGoogle Scholar
  247. Xu P, Zeng GM, Huang DL (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  248. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162PubMedCrossRefPubMedCentralGoogle Scholar
  249. Yasur J, Usha Rani P (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102PubMedCrossRefPubMedCentralGoogle Scholar
  250. Yin YH, Guo QM, Yun H, Wang LJ, Wan SQ (2012) Preparation, characterization and nematicidal activity of lansiumamide B nanocapsules. J Integr Agric 11(7):1151–1158CrossRefGoogle Scholar
  251. Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102Google Scholar
  252. Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534, 62 pp. https://www.ncbi.nlm.nih.gov/pubmed/27649147.  https://doi.org/10.3390/ijms17091534CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Setyowati Retno Djiwanti
    • 1
  • Suresh Kaushik
    • 2
  1. 1.Indonesian Agency for Agricultural Research and Development (IAARD), Indonesian Spice and Medicinal Crop Research Institute (ISMECRI), Plant Protection DivisionWest JavaIndonesia
  2. 2.Soil Science and Agricultural Chemistry, Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations