Advertisement

Locust Search Algorithm Applied to Multi-threshold Segmentation

  • Erik CuevasEmail author
  • Fernando Fausto
  • Adrián González
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 160)

Abstract

In a computer vision one problem is image segmentation as an alternative the problem has been handled whit optimization algorithm. Most of the methods have two difficulties (1) sub-optimal results (2) the number of classes is previously known. In this chapter presented an algorithm that automatic selection of this classes for image segmentation whit a new objective function in gaussian mixture model. The optimization algorithm called Locust Search (LS), is based on behavior of locust swarms, presented a balance between exploration and exploitation. The method was tested over several images to validate the efficacy over other techniques.

References

  1. 1.
    Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)CrossRefGoogle Scholar
  2. 2.
    Uemura, T., Koutaki, G., Uchimura, K.: Image segmentation based on edge detection using boundary code. Int. J. Innov. Comput. Inf. Control 7(10), 6073–6083 (2011)Google Scholar
  3. 3.
    Wang, L., Wu, H., Pan, C.: Region-based image segmentation with local signed difference energy. Pattern Recogn. Lett. 34(6), 637–645 (2013)CrossRefGoogle Scholar
  4. 4.
    Otsu, N.: A thresholding selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  5. 5.
    Peng, R., Varshney, P.K.: On performance limits of image segmentation algorithms. Comput. Vis. Image Underst. 132, 24–38 (2015)CrossRefGoogle Scholar
  6. 6.
    Balafar, M.A.: Gaussian mixture model based segmentation methods for brain MRI images. Artif. Intell. Rev. 41, 429–439 (2014)CrossRefGoogle Scholar
  7. 7.
    McLachlan, G.J., Rathnayake, S.: On the number of components in a Gaussian mixture model. Data Min. Knowl. Disc. 4(5), 341–355 (2014)CrossRefGoogle Scholar
  8. 8.
    Oliva, D., Osuna-Enciso, V., Cuevas, E., Pajares, G., Pérez-Cisneros, M., Zaldívar, D.: Improving segmentation velocity using an evolutionary method. Expert Syst. Appl. 42(14), 5874–5886 (2015)CrossRefGoogle Scholar
  9. 9.
    Ye, Z.-W., Wang, M.-W., Liu, W., Chen, S.-B.: Fuzzy entropy based optimal thresholding using bat algorithm. Appl. Soft Comput. 31, 381–395 (2015)CrossRefGoogle Scholar
  10. 10.
    Sarkar, S., Das, S., Chaudhuri, S.S.: A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recogn. Lett. 54, 27–35 (2015)CrossRefGoogle Scholar
  11. 11.
    Bhandari, A.K., Kumar, A., Singh, G.K.: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst. Appl. 42(3), 1573–1601 (2015)CrossRefGoogle Scholar
  12. 12.
    Permuter, H., Francos, J., Jermyn, I.: A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recogn. 39, 695–706 (2006)CrossRefGoogle Scholar
  13. 13.
    Dempster, A.P., Laird, A.P., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zhang, Z., Chen, C., Sun, J., Chan, L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recogn. 36, 1973–1983 (2003)CrossRefGoogle Scholar
  15. 15.
    Park, H., Amari, S., Fukumizu, K.: Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw. 13, 755–764 (2000)CrossRefGoogle Scholar
  16. 16.
    Park, H., Ozeki, T.: Singularity and slow convergence of the EM algorithm for Gaussian mixtures. Neural Process. Lett. 29, 45–59 (2009)CrossRefGoogle Scholar
  17. 17.
    Gupta, L., Sortrakul, T.: A Gaussian-mixture-based image segmentation algorithm. Pattern Recogn. 31(3), 315–325 (1998)CrossRefGoogle Scholar
  18. 18.
    Osuna-Enciso, V., Cuevas, E., Sossa, H.: A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Syst. Appl. 40(4), 1213–1219 (2013)CrossRefGoogle Scholar
  19. 19.
    Cuevas, E., Sención, F., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: A multi-threshold segmentation approach based on artificial bee colony optimization. Appl. Intell. 37(3), 321–336 (2012)CrossRefGoogle Scholar
  20. 20.
    Cuevas, E., Osuna-Enciso, V., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: Multithreshold segmentation based on artificial immune systems. Math. Probl. Eng. Article no. 874761 (2012)Google Scholar
  21. 21.
    Cuevas, E., Zaldivar, D., Pérez-Cisneros, M.: A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Syst. Appl. 37(7), 5265–5271 (2010)CrossRefGoogle Scholar
  22. 22.
    Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., Osuna, V.: A multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing 39, 357–381 (2014)CrossRefGoogle Scholar
  23. 23.
    Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., Perez-Cisneros, M.: Multilevel thresholding segmentation based on harmony search optimization. J. Appl. Math. Article no. 575414 (2013)Google Scholar
  24. 24.
    Cuevas, E., Zaldivar, D., Pérez-Cisneros, M.: Seeking multi-thresholds for image segmentation with learning automata. Mach. Vis. Appl. 22(5), 805–818 (2011)CrossRefGoogle Scholar
  25. 25.
    Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)CrossRefGoogle Scholar
  26. 26.
    Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)CrossRefGoogle Scholar
  27. 27.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Dec 1995Google Scholar
  28. 28.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95-012. ICSI, Berkeley, CA (1995)Google Scholar
  29. 29.
    Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tvrdík, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput. 9(3), 1149–1155 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle swarm optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gong, W., Fialho, Á., Cai, Z., Li, H.: Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2003)CrossRefGoogle Scholar
  34. 34.
    Kizaki, S., Katori, M.: A stochastic lattice model for locust outbreak. Phys. A 266, 339–342 (1999)CrossRefGoogle Scholar
  35. 35.
    Rogers, S.M., Cullen, D.A., Anstey, M.L., Burrows, M., Dodgson, T., Matheson, T., Ott, S.R., Stettin, K., Sword, G.A., Despland, E., Simpson, S.J.: Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics. J. Insect Physiol. 65, 9–26 (2014)CrossRefGoogle Scholar
  36. 36.
    Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts. Eur. Phys. J. Special Topics 157, 93–109 (2008)CrossRefGoogle Scholar
  37. 37.
    Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics: behavioral phase change and swarming. PLoS Comput. Biol. 8(8), 1–11 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)CrossRefGoogle Scholar
  39. 39.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Proceedings of CVPR Workshop Empirical Evaluation Methods in Computer Vision (2005)Google Scholar
  40. 40.
    Zhang, Y.J.: A survey on evaluating methods for image segmentation. Pattern Recogn. 29(8), 1335–1346 (1996)CrossRefGoogle Scholar
  41. 41.
    Chabrier, S., Emile, B., Rosenberger, C., Laurent, H.: Unsupervised performance evaluation of image segmentation. EURASIP J. Appl. Signal Process. 2006, Article ID 96306, pp. 1–12 (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Erik Cuevas
    • 1
    Email author
  • Fernando Fausto
    • 2
  • Adrián González
    • 3
  1. 1.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  3. 3.CUCEI, Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations