Advertisement

Auto-calibration of Fractional Fuzzy Controllers by Using the Swarm Social-Spider Method

  • Erik CuevasEmail author
  • Fernando Fausto
  • Adrián González
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 160)

Abstract

Fuzzy controllers (FCs) based on integer concepts have proved their interesting capacities in several engineering domains. The fact that dynamic processes can be more precisely modeled by using fractional systems has generated a great interest in considering the design of FCs under fractional principles. In the design of fractional FCs, the parameter adjustment operation is converted into a multidimensional optimization task where fractional orders, and controller parameters, are assumed as decision elements. In the design of fractional FCs, the complexity of the optimization problem produces multi-modal error surfaces which are significantly hard to solve. Several swarm algorithms have been successfully used to identify the optimal elements of fractional FCs. But, most of them present a big weakness since they usually get sub-optimal solutions as a result of their improper balance between exploitation and exploration in their search process. This chapter analyses the optimal parameter calibration of fractional FCs. To determine the best elements, the approach employs the Social Spider Optimization (SSO) algorithm, which is based on the simulation of the cooperative operation of social-spiders. In SSO, candidate solutions represent a group of spiders, which interact with each other by considering the biological concepts of the spider colony. Different to most of the swarm algorithms, the approach explicitly avoids the concentration of solutions in the promising positions, eliminating critical defects such as the premature convergence and the deficient balance of exploration-exploitation.

References

  1. 1.
    Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  3. 3.
    Das, S., Pan, I., Das, S., Gupta, A.: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. J. Eng. Appl. Artif. Intell. 25, 430–442 (2012)CrossRefGoogle Scholar
  4. 4.
    Delavari, H., Ghaderi, R., Ranjbar, A., Momani, S.: Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(4), 963–978 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jesus, I.S., Barbosa, R.S.: Genetic optimization of fuzzy fractional PD+I controllers. ISA Trans. 57, 220–230 (2015)CrossRefGoogle Scholar
  6. 6.
    Barbosa, R.S., Jesus, I.S.: A methodology for the design of fuzzy fractional PID controllers. In: ICINCO 2013—Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics, vol. 1, pp. 276–281 (2013)Google Scholar
  7. 7.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  8. 8.
    He, Y., Chen, H., He, Z., Zhou, L.: Multi-attribute decision making based on neutral averaging operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015)CrossRefGoogle Scholar
  9. 9.
    Pana, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)CrossRefGoogle Scholar
  10. 10.
    Roy, G.G., Chakraborty, P., Das, S.: Designing fractional-order PIλDμ controller using differential harmony search algorithm. Int. J. Bio-Inspired Comput. 2(5), 303–309 (2010)CrossRefGoogle Scholar
  11. 11.
    Xu, Y., Zhou, J., Xue, X., Fu, W., Zhu, W., Li, C.: An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm. Energy Convers. Manag. 111, 67–78 (2016)CrossRefGoogle Scholar
  12. 12.
    Sharma, R., Rana, K.P.S., Kumar, V.: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 4274–4289 (2014)CrossRefGoogle Scholar
  13. 13.
    Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)CrossRefGoogle Scholar
  15. 15.
    Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)CrossRefGoogle Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley (1989)Google Scholar
  17. 17.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Dec 1995Google Scholar
  18. 18.
    Geem, Z.W., Kim, J., Loganathan, G.: Music-inspired optimization algorithm harmony search. Simulation 76, 60–68 (2001)CrossRefGoogle Scholar
  19. 19.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)CrossRefGoogle Scholar
  20. 20.
    Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 339–343 (2010)zbMATHGoogle Scholar
  21. 21.
    Pereira, D.R., Pazoti, M.A., Pereira, L.A.M., Rodrigues, D., Ramos, C.O., Souza, A.N., Papa, J.P.: Social-spider optimization-based support vector machines applied for energy theft detection. Comput. Electr. Eng. 49, 25–38 (2016)CrossRefGoogle Scholar
  22. 22.
    Mirjalili, S.Z., Saremi, S., Mirjalili, S.M.: Designing evolutionary feedforward neural networks using social spider optimization algorithm. Neural Comput. Appl. 26(8), 1919–1928 (2015)CrossRefGoogle Scholar
  23. 23.
    Klein, C.E., Segundo, E.H.V., Mariani, V.C., Coelho, L.D.S.: Modified social-spider optimization algorithm applied to electromagnetic optimization. IEEE Trans. Magn. 52(3), 2–10 (2016)CrossRefGoogle Scholar
  24. 24.
    Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584 (2016)CrossRefGoogle Scholar
  25. 25.
    Tawhid, M.A., Ali, A.F.: A simplex social spider algorithm for solving integer programming and minimax problems. Memetic Comput. (In press)Google Scholar
  26. 26.
    Jesus, I., Machado, J.: Application of fractional calculus in the control of heat systems. J. Adv. Comput. Intell. Intell. Inform. 11(9), 1086–1091 (2007)CrossRefGoogle Scholar
  27. 27.
    Machado, J.: Analysis and design of fractional-order digital control systems. SAMS J. Syst. Anal. Modell. Simul. 27, 107–122 (1997)zbMATHGoogle Scholar
  28. 28.
    Liu, L., Pan, F., Xue, D.: Variable-order fuzzy fractional PID controller. ISA Trans. 55, 227–233 (2015)CrossRefGoogle Scholar
  29. 29.
    Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)CrossRefGoogle Scholar
  30. 30.
    El-Khazali, R.: Fractional-order PIλDµ controller design. Comput. Math. Appl. 66, 639–646 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hélie, T.: Simulation of fractional-order low-pass filters. IEEE/ACM Trans. Audio Speech Lang. Process. 22(11), 1636–1647 (2014)CrossRefGoogle Scholar
  33. 33.
    Hwang, C., Leu, J.-F., Tsay, S.-Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Podlubny, I.: Fractional Differential Equations. Academic Press (1998)Google Scholar
  35. 35.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993)Google Scholar
  36. 36.
    Dorcak, L.: Numerical models for the simulation of the fractional-order control systems. Numer. Model. Simul. Fractional-Order Control Syst. (1994)Google Scholar
  37. 37.
    Barbosa, R., Machado, J.A., Silva, M.: Time domain design of fractional differintegrators using least-squares. Signal Process. 86(10), 2567–2581 (2006)CrossRefGoogle Scholar
  38. 38.
    Chen, Y.Q., Vinagre, B., Podlubny, I.: Continued fraction expansion to discretize fractional order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)CrossRefGoogle Scholar
  39. 39.
    Vinagre, B.M., Chen, Y., Petráš, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Frankl. Inst. 340(5), 349–362 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Jacobs, B.A.: A new Grünwald-Letnikov derivative derived from a second-order scheme. Abstr. Appl. Anal. 2015, Article ID 952057, 9 pages (2015).  https://doi.org/10.1155/2015/952057
  41. 41.
    Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional differential equations. Comput. Math Appl. 62, 902–917 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Liu, H., Li, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing (In press)Google Scholar
  43. 43.
    Bigdeli, N.: The design of a non-minimal state space fractional-order predictive functional controller for fractional systems of arbitrary order. J. Process Control 29, 45–56 (2015)CrossRefGoogle Scholar
  44. 44.
    Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples. Int. J. Approximate Reasoning 17(4), 369–407 (1997)CrossRefGoogle Scholar
  45. 45.
    Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7, 1–13 (1975)CrossRefGoogle Scholar
  46. 46.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)Google Scholar
  47. 47.
    Xu, J.-X., Li, C., Hang, C.C.: Tuning of fuzzy PI controllers based on gain/phase margin specifications and ITAE index. ISA Trans. 35(1), 79–91 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Erik Cuevas
    • 1
    Email author
  • Fernando Fausto
    • 2
  • Adrián González
    • 3
  1. 1.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  3. 3.CUCEI, Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations