Distribution and Habitats of Aquatic Insects

  • Ricardo Koroiva
  • Mateus Pepinelli


Understanding how communities, populations, and species are organized and distributed is one of the main objectives of ecology. Aquatic insects are composed of several orders of diverse groups found in many different types of aquatic (and semiaquatic) habitats. From the highest water trickles to the largest rivers and deepest lakes, aquatic insects have successfully achieved a global distribution, with an extraordinary capacity of survival in the most distinct conditions. Considering the breadth of the subject, this chapter aims to show some of the factors related to the distribution of aquatic insects, illustrating the main habitats used by the main orders.


Biodiversity Spatial factors Lentic-lotic Saltwater Environments inhabited 


  1. Abell JM, Özkundakci D, Hamilton D, Miller S (2011) Relationships between land use and nitrogen and phosphorus in New Zealand lakes. Mar Freshw Res 62:162–175CrossRefGoogle Scholar
  2. Allan JD (1996) Stream ecology: structure and function of running waters. Chapman & Hall, New YorkGoogle Scholar
  3. Andersen NM, Cheng L (2004) The marine insect Halobates (Heteroptera: Gerridae): biology, adaptations, distribution and phylogeny. Oceanogr Mar Biol Annu Rev 42:119–180Google Scholar
  4. Armitage PD, Pinder LC, Cranston P (1995) The chironomidae: biology and ecology of non-biting midges. Springer, DordrechtCrossRefGoogle Scholar
  5. Bae M-J, Kwon Y, Hwang S-J et al (2011) Relationships between three major stream assemblages and their environmental factors in multiple spatial scales. Ann Limnol Int J Limnol 47:S91–S105. CrossRefGoogle Scholar
  6. Balister P, Balogh J, Bertuzzo E et al (2018) River landscapes and optimal channel networks. Proc Natl Acad Sci 115:6548–6553. CrossRefPubMedGoogle Scholar
  7. Barnes JB, Vaughan IP, Ormerod SJ (2013) Reappraising the effects of habitat structure on river macroinvertebrates. Freshw Biol 58:2154–2167. CrossRefGoogle Scholar
  8. Barton BA, Taylor BR (1994) Dissolved oxygen requirements for fish of the Peace, Athabasca, and Slave River BasinsGoogle Scholar
  9. Battle JM, Jackson JK, Sweeney BW (2007) Mesh size affects macroinvertebrate descriptions in large rivers: examples from the Savannah and Mississippi Rivers. Hydrobiologia 592:329–343. CrossRefGoogle Scholar
  10. Batzer D, Boix D (2016) Invertebrates in Freshwater Wetlands. Springer, ChamCrossRefGoogle Scholar
  11. Batzer DP, Ruhí A (2013) Is there a core set of organisms that structure macroinvertebrate assemblages in freshwater wetlands? Freshw Biol 58:1647–1659. CrossRefGoogle Scholar
  12. Batzer DP, Sharitz RR (2007) Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley, CACrossRefGoogle Scholar
  13. Bell N, Riis T, Suren AM, Baattrup-Pedersen A (2013) Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundam Appl Limnol/Arch für Hydrobiol 183:309–321. CrossRefGoogle Scholar
  14. Bessey C, Cresswell AK (2016) Masses of the marine insect Pontomyia oceana at Ningaloo Reef, Western Australia. Coral Reefs 35:1225. CrossRefGoogle Scholar
  15. Blumenshine SC, Vadeboncoeur Y, Lodge DM et al (1997) Benthic-pelagic links: responses of benthos to water-column nutrient enrichment. J N Am Benthol Soc 16:466–479. CrossRefGoogle Scholar
  16. Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boulton AJ, Lake PS (2008) Effects of drought on stream insects and its ecological consequences. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to populations. CABI, Wallingford, pp 81–102CrossRefGoogle Scholar
  18. Brown BL (2003) Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol Lett 6:316–325. CrossRefGoogle Scholar
  19. Brundin L (1966) Transantarctic relationships and their significance, as evidenced by chironomid midges. With a monograph of the subfamilies Podonominae and Aphroteniinae and the Austral Heptagyiae. K Sven Vetenskapakadamiens Handl 11:1–474Google Scholar
  20. Byers JE, Cuddington K, Jones CG et al (2006) Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 21:493–500. CrossRefPubMedGoogle Scholar
  21. Chester ET, Robson BJ (2011) Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshw Biol 56:2094–2104. CrossRefGoogle Scholar
  22. Chipps SR, Hubbard DE, Werlin KB et al (2006) Association between wetland disturbance and biological attributes in floodplain wetlands. Wetlands 26:497–508CrossRefGoogle Scholar
  23. Cowley DR (1978) Studies on the larvae of New Zealand trichoptera. N Z J Zool 5:639–750. CrossRefGoogle Scholar
  24. Cummins KW (2016) Combining taxonomy and function in the study of stream macroinvertebrates. J Limnol 75.
  25. Currie DC (1986) Morphology and systematics of primitive Simuliidae (Diptera: Culicomorpha). University of Alberta, EdmontonGoogle Scholar
  26. Dallas H, Day J (2004) The effect of water quality variables on aquatic ecosystems: a review. Water Research Commission, PretoriaGoogle Scholar
  27. Death RG, Winterbourn MJ (1995) Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology 76:1446–1460. CrossRefGoogle Scholar
  28. van der Valk AG (2012) Microorganisms and invertebrates. In: The Biology of Freshwater Wetlands. Oxford University Press, Oxford, pp 45–68CrossRefGoogle Scholar
  29. Dijkstra K-DB, Monaghan MT, Pauls SU (2014) Freshwater biodiversity and aquatic insect diversification. Annu Rev Entomol 59:143–163. CrossRefPubMedGoogle Scholar
  30. Fenoglio S, Bo T, Cucco M et al (2010) Effects of global climate change on freshwater biota: a review with special emphasis on the Italian situation. Ital J Zool 77:374–383. CrossRefGoogle Scholar
  31. Fincke OM (1998) The population ecology of Megaloprepus caerulatus and its effect on species assemblages in water-filled tree holes. In: Insect populations in theory and in practice. Springer Netherlands, Dordrecht, pp 391–416CrossRefGoogle Scholar
  32. Genkai-Kato M, Nozaki K, Mitsuhashi H et al (2000) Push-up response of stonefly larvae in low-oxygen conditions. Ecol Res 15:175–179. CrossRefGoogle Scholar
  33. Gimenez BCG, Lansac-Tôha FA, Higuti J (2015) Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams. Braz J Biol 75:52–59. CrossRefGoogle Scholar
  34. Godoy BS, Queiroz LL, Lodi S et al (2016) Successional colonization of temporary streams: an experimental approach using aquatic insects. Acta Oecol 77:43–49. CrossRefGoogle Scholar
  35. Gonçalves JF Jr, Santos AM, Esteves FA (2004) The influence of the chemical composition of Typha Domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia 527:125–137. CrossRefGoogle Scholar
  36. Greeney HF (2001) The insects of plant-held waters: a review and bibliography. J Trop Ecol 17:241–260. CrossRefGoogle Scholar
  37. Griffith MB (2017) Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: teleost fish, crustacea, aquatic insects, and Mollusca. Environ Toxicol Chem 36:576–600. CrossRefPubMedGoogle Scholar
  38. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, CambridgeGoogle Scholar
  39. Grönroos M, Heino J, Siqueira T et al (2013) Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol Evol 3:4473–4487. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gullan PJ, Cranston PS (2014) The insects: an outline of entomology, 5th edn. Wiley & Sons, ChichesterGoogle Scholar
  41. Gurski FDA, Pinha GD, Moretto Y et al (2014) Effect of habitat heterogeneity in the composition and distribution of Chironomidae (Diptera) assemblage in different microhabitats of preserved streams in the Brazilian Atlantic Forest. Acta Limnol Bras 26:163–175. CrossRefGoogle Scholar
  42. Heck KL, Crowder LB (1991) Habitat structure and predator—prey interactions in vegetated aquatic systems. In: Habitat structure. Springer Netherlands, Dordrecht, pp 281–299CrossRefGoogle Scholar
  43. Heino J (2009) Biodiversity of aquatic insects: spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshwater Rev 2:1–29. CrossRefGoogle Scholar
  44. Heino J (2013) Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171:971–980. CrossRefPubMedGoogle Scholar
  45. Heino J, Melo AS, Bini LM (2015) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw Biol 60:223–235. CrossRefGoogle Scholar
  46. Heino J, Soininen J, Alahuhta J et al (2017) Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia 183:121–137. CrossRefPubMedGoogle Scholar
  47. Hill MJ, Heino J, Thornhill I, et al (2017) Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos 126:1575–1585. CrossRefGoogle Scholar
  48. Hutchinson G (1957) A treatise on limnology, vol 1. John Wiley & Sons, New YorkGoogle Scholar
  49. Hynes HBN (1970) The ecology of running waters. Toronto Press, Toronto, ONGoogle Scholar
  50. Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249. CrossRefGoogle Scholar
  51. Jocque M, Vanschoenwinkel B, Brendonck L (2010) Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshw Biol 55:1587–1602. CrossRefGoogle Scholar
  52. Kasangki A, Chapman LJ, Balirwa J (2008) Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshw Biol 53:681–697. CrossRefGoogle Scholar
  53. Keleher MJ, Sada DW (2012) Desert spring wetlands of the Great Basin. In: Batzer DP, Baldwin AH (eds) Wetland habitats of North America. University of California Press, Berkeley, CA, pp 329–341Google Scholar
  54. Kingsolver JG, Arthur Woods H, Buckley LB et al (2011) Complex life cycles and the responses of insects to climate change. Integr Comp Biol 51:719–732. CrossRefPubMedGoogle Scholar
  55. Kitching RL (2009) Food webs and container habitats: the natural history and ecology of phytotelma. Cambridge University Press, CambridgeGoogle Scholar
  56. Kling LJ, Juliano SA, Yee DA (2007) Larval mosquito communities in discarded vehicle tires in a forested and unforested site: detritus type, amount, and water nutrient differences. J Vector Ecol 32:207–217.[207:LMCIDV]2.0.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kohshima S (1984) A novel cold-tolerant insect found in a Himalayan glacier. Nature 310:225–227. CrossRefGoogle Scholar
  58. Lamberti GA, Resh VH (1985) Distribution of benthic algae and macroinvertebrates along a thermal stream gradient. Hydrobiologia 128:13–21. CrossRefGoogle Scholar
  59. Lloyd LS (2003) Best practices for dengue prevention and control in the Americas. Environ Heal Proj:1–105Google Scholar
  60. London MS (2017) A comparison of benthic macroinvertebrate assemblages between perennial and intermittent headwater streams of the Mattole river in Northern California, USA. Faculty of Humboldt State UniversityGoogle Scholar
  61. Machado ABM, Martinez A (1982) Oviposition by egg-throwing in a zygopteran, Mecistogaster jocaste Hagen, 1869 (Pseudostigmatidae). Odonatologica 11:15–22Google Scholar
  62. Manguin S, Boëte C (2011) Global impact of mosquito biodiversity, human vector-borne diseases and environmental change. Importance Biol Interact Study Biodivers:27–50. Google Scholar
  63. Masson S, Desrosiers M, Pinel-Alloul B, Martel L (2010) Relating macroinvertebrate community structure to environmental characteristics and sediment contamination at the scale of the St. Lawrence. River Hydrobiol 647:35–50. CrossRefGoogle Scholar
  64. Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, DubuqueGoogle Scholar
  65. Minshall GW (1978) Autotrophy in stream ecosystems. BioScience 28:767–771. CrossRefGoogle Scholar
  66. Nabout JC, Siqueira T, Bini LM, Nogueira IS (2009) No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecol 35:720–726. CrossRefGoogle Scholar
  67. Paice RL, Chambers JM, Robson BJ (2017) Potential of submerged macrophytes to support food webs in lowland agricultural streams. Mar Freshw Res 68:549–562. CrossRefGoogle Scholar
  68. Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222. CrossRefGoogle Scholar
  69. Paterson CG (1971) Overwintering ecology of the aquatic fauna associated with the pitcher plant Sarracenia purpurea L. Can J Zool 49:1455–1459CrossRefGoogle Scholar
  70. Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409. CrossRefGoogle Scholar
  71. Poff NL, Pyne MI, Bledsoe BP et al (2010) Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. J N Am Benthol Soc 29:1441–1458. CrossRefGoogle Scholar
  72. Power ME, Holomuzki JR, Lowe RL (2013) Food webs in Mediterranean rivers. Hydrobiologia 719:119–136. CrossRefGoogle Scholar
  73. Richardson JS (2008) Aquatic arthropods and forestry: effects of large-scale land use on aquatic systems in Nearctic temperate regions. Can Entomol 140:495–509. CrossRefGoogle Scholar
  74. Sáinz-Bariáin M, Zamora-Muñoz C, Soler JJ et al (2016) Changes in Mediterranean high mountain Trichoptera communities after a 20-year period. Aquat Sci 78:669–682. CrossRefGoogle Scholar
  75. Salles FF, Ferreira-Júnior N (2014) Hábitat e hábitos. In: Hamada N, Nessimian JL, Querino R (eds) Insetos aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus, pp 39–49Google Scholar
  76. Santos AN, Stevenson RD (2011) Comparison of macroinvertebrate diversity and community structure among perennial and non-perennial headwater streams. Northeast Nat 18:7–26. CrossRefGoogle Scholar
  77. Scheffer M (2004) Ecology of Shallow Lakes. Springer Netherlands, DordrechtCrossRefGoogle Scholar
  78. Shah AA, Gill BA, Encalada AC et al (2017) Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct Ecol 31:2118–2127. CrossRefGoogle Scholar
  79. Shimabukuro EM, Pepinelli M, Perbiche-Neves G, Trivinho-Strixino S (2015) A new trap for collecting aquatic and semi-aquatic insects from madicolous habitats. Insect Conserv Divers 8:578–583. CrossRefGoogle Scholar
  80. Shobanov NA (2001) Function of ventral and lateral processes in larvae of chironomus (Diptera, Chironomidae). J Evol Biochem Physiol 37:384–387. CrossRefGoogle Scholar
  81. Siegloch AE, Suriano M, Spies M, Fonseca-Gessner A (2014) Effect of land use on mayfly assemblages structure in neotropical headwater streams. An Acad Bras Cienc 86:1735–1747. CrossRefPubMedGoogle Scholar
  82. Sinclair BJ, Marshall SA (1987) The madicolous fauna in southern Ontario. Proc Entomol Soc Ont 117:9–14Google Scholar
  83. Siqueira T, Durães LD, de Oliveira RF (2014) Predictive modelling of insect metacommunities in biomonitoring of aquatic networks. In: Ecological modelling applied to entomology. Springer, Cham, pp 109–126Google Scholar
  84. Springer M (2009) Marine insects. In: Wehrtmann IS, Cortés J (eds) Marine Biodiversity of Costa Rica, Central America. Springer Netherlands, Dordrecht, pp 313–322CrossRefGoogle Scholar
  85. Strahler A (1952) Dynamic basis of geomorphology. Geol Soc Am Bull 63:923–938CrossRefGoogle Scholar
  86. Tojo K, Sekiné K, Suzuki T et al (2017) The species and genetic diversities of insects in Japan, with special reference to the aquatic insects. In: Motokawa M, Kajihara H (eds) Species diversity of animals in Japan. Springer, Japan, pp 229–247CrossRefGoogle Scholar
  87. Tolonen KE, Tokola L, Grönroos M et al (2016) Hierarchical decomposition of trait patterns of macroinvertebrate communities in subarctic streams. Freshw Sci 35:1032–1048. CrossRefGoogle Scholar
  88. Tonkin JD, Heino J, Altermatt F (2018) Metacommunities in river networks: the importance of network structure and connectivity on patterns and processes. Freshw Biol 63:1–5. CrossRefGoogle Scholar
  89. Tornwall BM, Swan CM, Brown BL (2017) Manipulation of local environment produces different diversity outcomes depending on location within a river network. Oecologia 184:663–674. CrossRefPubMedGoogle Scholar
  90. USDA (2001) Stream corridor restoration: principles, processes, and practices. USDAGoogle Scholar
  91. Vaillant F (1956) Recherches sur la faune madicole de France, de Corse et d’Afrique du Nord. Mem du Mus d’Histoire Nat Paris 11:1–258Google Scholar
  92. Valente-Neto F, Koroiva R, Fonseca-Gessner AA, Roque F de O (2015) The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquat Ecol 49:115–125. doi: CrossRefGoogle Scholar
  93. Vannote R, Sweeney BW (1980) Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am Nat 115:667–695CrossRefGoogle Scholar
  94. Vannote RL, Minshall GW, Cummins KW et al (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137. CrossRefGoogle Scholar
  95. Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography (Cop) 26:751–767. CrossRefGoogle Scholar
  96. Wegener A (1922) Die Entstehung der Kontinente und Ozeane. Vieweg, BraunschweigGoogle Scholar
  97. Wiggins GB (2004) Caddisflies: the underwater architects. University of Toronto Press, Toronto, ONCrossRefGoogle Scholar
  98. Williams DD (2006) The biology of temporary waters. Oxford University Press, OxfordGoogle Scholar
  99. Winterbourn MJ, Anderson NH (1980) The life history of Philanisus plebeius Walker (Trichoptera: Chathamiidae), a caddisfly whose eggs were found in a starfish. Ecol Entomol 5:293–304. CrossRefGoogle Scholar
  100. Xenopoulos MA, Downing JA, Kumar MD et al (2017) Headwaters to oceans: ecological and biogeochemical contrasts across the aquatic continuum. Limnol Oceanogr 62:S3–S14. CrossRefGoogle Scholar
  101. Yee DA, Yee SH (2007) Nestedness patterns of container-dwelling mosquitoes: effects of larval habitat within variable terrestrial matrices. Hydrobiologia 592:373–385. CrossRefGoogle Scholar
  102. Zahouli JBZ, Koudou BG, Müller P et al (2017) Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Negl Trop Dis 11:1–23. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ricardo Koroiva
    • 1
    • 2
  • Mateus Pepinelli
    • 3
  1. 1.Mapinguari Lab, Federal University of Mato Grosso do SulCampo GrandeBrazil
  2. 2.Departamento de Hidrobiologia (DHb)Universidade Federal de São CarlosSão CarlosBrazil
  3. 3.Department of Natural HistoryRoyal Ontario MuseumTorontoCanada

Personalised recommendations