Advertisement

Nonsubmodular Optimization

  • Weili Wu
  • Zhao Zhang
  • Ding-Zhu DuEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 147)

Abstract

The nonsubmodular optimization is a hot research topic in the study of nonlinear combinatorial optimizations. We discuss several approaches to deal with such optimization problems, including supermodular degree, curvature, algorithms based on DS decomposition, and sandwich method.

References

  1. 1.
    Bai, W., Bilmes, J.A.: Greed is still good: maximizing monotone submodular+ supermodular functions (2018). Preprint. arXiv:1801.07413Google Scholar
  2. 2.
    Barhan, A., Shakhomirov, A.: Methods for sentiment analysis of twitter messages. In: 12th Conference of FRUCT Association (2012)Google Scholar
  3. 3.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, W., Lin, T., Tan, Z., Zhao, M., Zhou, X.: Robust influence maximization. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 795–804. ACM, New York (2016)Google Scholar
  5. 5.
    Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Netw. Int. J. 42(4), 202–208 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ding, L., Gao, X., Wu, W., Lee, W., Zhu, X., Du, D.-Z.: Distributed construction of connected dominating sets with minimum routing cost in wireless networks. In: 2010 IEEE 30th International Conference on Distributed Computing Systems (ICDCS), pp. 448–457. IEEE, Piscataway (2010)Google Scholar
  7. 7.
    Ding, L., Wu, W., Willson, J.K., Du, H., Lee, W.: Construction of directional virtual backbones with minimum routing cost in wireless networks. In: INFOCOM, 2011 Proceedings IEEE, pp. 1557–1565. IEEE, Piscataway (2011)Google Scholar
  8. 8.
    Du, H., Wu, W., Lee, W., Liu, Q., Zhang, Z., Du, D.-Z.: On minimum submodular cover with submodular cost. J. Glob. Optim. 50(2), 229–234 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Du, H., Ye, Q., Wu, W., Lee, W., Li, D., Du, D., Howard, S.: Constant approximation for virtual backbone construction with guaranteed routing cost in wireless sensor networks. In: INFOCOM, 2011 Proceedings IEEE, pp. 1737–1744. IEEE, Piscataway (2011)Google Scholar
  10. 10.
    Du, H., Ye, Q., Zhong, J., Wang, Y., Lee, W., Park, H.: Polynomial-time approximation scheme for minimum connected dominating set under routing cost constraint in wireless sensor networks. Theor. Comput. Sci. 447, 38–43 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Du, H., Wu, W., Ye, Q., Li, D., Lee, W., Xu, X.: CDS-based virtual backbone construction with guaranteed routing cost in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(4), 652–661 (2013)CrossRefGoogle Scholar
  12. 12.
    Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup curves. In: Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 685–692. SIAM, Philadelphia (2009)Google Scholar
  13. 13.
    Feige, U., Izsak, R.: Welfare maximization and the supermodular degree. In: Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pp. 247–256. ACM, New York (2013)Google Scholar
  14. 14.
    Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Feldman, M., Izsak, R.: Constrained monotone function maximization and the supermodular degree. (2014). Preprint. arXiv:1407.6328Google Scholar
  16. 16.
    Feldman, M., Izsak, R.: Building a good team: secretary problems and the supermodular degree. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1651–1670. SIAM, Philadelphia (2017)Google Scholar
  17. 17.
    Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 570–579. IEEE, Piscataway (2011)Google Scholar
  18. 18.
    Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions—II. In: Polyhedral Combinatorics, pp. 73–87. Springer, Berlin (1978)Google Scholar
  19. 19.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Guo, J., Wu, W. Viral marketing with complementary products. In: Du, D.-Z., Pardalos, P.M., Zhang, Z. (eds.) Nonlinear Combinatorial Optimization. Springer International Publishing, Cham (2019)Google Scholar
  21. 21.
    Iyer, R., Bilmes, J.: Algorithms for approximate minimization of the difference between submodular functions, with applications. (2012). Preprint. arXiv:1207.0560Google Scholar
  22. 22.
    Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and submodular knapsack constraints. In: Advances in Neural Information Processing Systems, pp. 2436–2444 (2013)Google Scholar
  23. 23.
    Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 323–332. ACM, New York (2009)Google Scholar
  24. 24.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM, New York (2007)Google Scholar
  25. 25.
    Lu, W., Chen, W., Lakshmanan, L.V.S.: From competition to complementarity: comparative influence diffusion and maximization. Proc. VLDB Endowment 9(2), 60–71 (2015)CrossRefGoogle Scholar
  26. 26.
    Maehara, T., Murota, K.: A framework of discrete dc programming by discrete convex analysis. Math. Program. 152(1–2), 435–466 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Narasimhan, M., Bilmes, J.A.: A submodular-supermodular procedure with applications to discriminative structure learning (2012). Preprint. arXiv:1207.1404Google Scholar
  28. 28.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions I. Math. Program. 14(1), 265–294 (1978)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118(2), 237–251 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.-I.: A greedy approximation for minimum connected dominating sets. Theor. Comput. Sci. 329(1–3), 325–330 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Ser. B 80(2), 346–355 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sivakumar, R., Das, B., Bharghavan, V.: An improved spine-based infrastructure for routing in ad hoc networks. In: IEEE Symposium on Computers and Communications, vol., 98 (1998)Google Scholar
  33. 33.
    Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks. IEEE Trans. Parallel Distrib. Syst. 13(1), 14–25 (2002)CrossRefGoogle Scholar
  34. 34.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Svitkina, Z., Fleischer, L.: Submodular approximation: sampling-based algorithms and lower bounds. SIAM J. Comput. 40(6), 1715–1737 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tong, A., Du, D.-Z., Wu, W.: On misinformation containment in online social networks. In: Advances in Neural Information Processing Systems, pp. 339–349 (2018)Google Scholar
  37. 37.
    Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. In: INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1597–1604. IEEE, Piscataway (2002)Google Scholar
  38. 38.
    Wan, P.-J., Du, D.-Z., Pardalos, P., Wu, W.: Greedy approximations for minimum submodular cover with submodular cost. Comput. Optim. Appl. 45(2), 463–474 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, Z., Yang, Y., Pei, J., Chu, L., Chen, E.: Activity maximization by effective information diffusion in social networks. IEEE Trans. Knowl. Data Eng. 29(11), 2374–2387 (2017)CrossRefGoogle Scholar
  40. 40.
    Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wu, J., Li, H.: On calculating connected dominating set for efficient routing in ad hoc wireless networks. In: Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 7–14. ACM, New York (1999)Google Scholar
  42. 42.
    Wu, B., Lyu, S., Ghanem, B.: Constrained submodular minimization for missing labels and class imbalance in multi-label learning. In: AAAI, pp. 2229–2236 (2016)Google Scholar
  43. 43.
    Wu, C., Wang, Y., Lu, Z., Pardalos, P.M., Xu, D., Zhang, Z., Du, D.-Z.: Solving the degree-concentrated fault-tolerant spanning subgraph problem by DC programming. Math. Program. 169(1), 255–275 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wu, W., Zhang, Z., Du, D.Z.: Set function optimization. J. Oper. Res. China (to appear)Google Scholar
  45. 45.
    Zhu, J., Zhu, J., Ghosh, S., Wu, W., Yuan, J.: Social influence maximization in hypergraph in social networks. IEEE Trans. Netw. Sci. Eng. (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of Texas at DallasRichardsonUSA
  2. 2.Department of Computer ScienceZhejiang Normal UniversityJinhuaChina

Personalised recommendations