Advertisement

Co-clustering from Tensor Data

  • Rafika BoutalbiEmail author
  • Lazhar Labiod
  • Mohamed Nadif
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11439)

Abstract

With the exponential growth of collected data in different fields like recommender system (user, items), text mining (document, term), bioinformatics (individual, gene), co-clustering which is a simultaneous clustering of both dimensions of a data matrix, has become a popular technique. Co-clustering aims to obtain homogeneous blocks leading to an easy simultaneous interpretation of row clusters and column clusters. Many approaches exist, in this paper we rely on the latent block model (LBM) which is flexible allowing to model different types of data matrices. We extend its use to the case of a tensor (3D matrix) data in proposing a Tensor LBM (TLBM) allowing different relations between entities. To show the interest of TLBM, we consider continuous and binary datasets. To estimate the parameters, a variational EM algorithm is developed. Its performances are evaluated on synthetic and real datasets to highlight different possible applications.

Keywords

Co-clustering Tensor Data science 

References

  1. 1.
    Banerjee, A., Krumpelman, C., Ghosh, J., Basu, S., Mooney, R.J.: Model-based overlapping clustering. In: Proceedings of the Eleventh ACM SIGKDD, pp. 532–537 (2005)Google Scholar
  2. 2.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings of the Ninth ACM SIGKDD, pp. 89–98 (2003)Google Scholar
  4. 4.
    Feizi, S., Javadi, H., Tse, D.: Tensor biclustering. In: Advances in Neural Information Processing Systems 30, pp. 1311–1320. Curran Associates, Inc. (2017)Google Scholar
  5. 5.
    Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)CrossRefGoogle Scholar
  6. 6.
    Govaert, G., Nadif, M.: An EM algorithm for the block mixture model. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 643–647 (2005)CrossRefGoogle Scholar
  7. 7.
    Govaert, G., Nadif, M.: Fuzzy clustering to estimate the parameters of block mixture models. Soft Comput. 10(5), 415–422 (2006)CrossRefGoogle Scholar
  8. 8.
    Govaert, G., Nadif, M.: Co-clustering. Wiley-IEEE Press (2013)Google Scholar
  9. 9.
    Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  10. 10.
    Kumar, R.M., Sreekumar, K.: A survey on image feature descriptors. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(1), 7668–7673 (2014)Google Scholar
  11. 11.
    Steinley, D.: Properties of the hubert-arabie adjusted rand index. Psychol. Methods 9(3), 386 (2004)CrossRefGoogle Scholar
  12. 12.
    Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Vu, D., Aitkin, M.: Variational algorithms for biclustering models. Comput. Stat. Data Anal. 89, 12–24 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wu, T., Benson, A.R., Gleich, D.F.: General tensor spectral co-clustering for higher-order data. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 2559–2567. Curran Associates, Inc. (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafika Boutalbi
    • 1
    • 2
    Email author
  • Lazhar Labiod
    • 1
  • Mohamed Nadif
    • 1
  1. 1.LIPADEUniversity of Paris DescartesParisFrance
  2. 2.TRINOVParisFrance

Personalised recommendations