Spatial-Temporal Multi-Task Learning for Within-Field Cotton Yield Prediction

  • Long H. NguyenEmail author
  • Jiazhen Zhu
  • Zhe Lin
  • Hanxiang Du
  • Zhou Yang
  • Wenxuan Guo
  • Fang Jin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11439)


Understanding and accurately predicting within-field spatial variability of crop yield play a key role in site-specific management of crop inputs such as irrigation water and fertilizer for optimized crop production. However, such a task is challenged by the complex interaction between crop growth and environmental and managerial factors, such as climate, soil conditions, tillage, and irrigation. In this paper, we present a novel Spatial-temporal Multi-Task Learning algorithm for within-field crop yield prediction in west Texas from 2001 to 2003. This algorithm integrates multiple heterogeneous data sources to learn different features simultaneously, and to aggregate spatial-temporal features by introducing a weighted regularizer to the loss functions. Our comprehensive experimental results consistently outperform the results of other conventional methods, and suggest a promising approach, which improves the landscape of crop prediction research fields.



This work was supported by the U.S. National Science Foundation under the Grant CNS-1737634.


  1. 1.
    Bastiaanssen, W.G., Ali, S.: A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 94(3), 321–340 (2003)CrossRefGoogle Scholar
  2. 2.
    Hebbar, K., et al.: Predicting cotton production using infocrop-cotton simulation model, remote sensing and spatial agro-climatic data. Curr. Sci. 95, 1570–1579 (2008)Google Scholar
  3. 3.
    Akay, D., Atak, M.: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32(9), 1670–1675 (2007)CrossRefGoogle Scholar
  4. 4.
    Sugihara, G., May, R.M.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268), 734 (1990)CrossRefGoogle Scholar
  5. 5.
    Garcia, O.: A stochastic differential equation model for the height growth of forest stands. Biometrics 39, 1059–1072 (1983)CrossRefGoogle Scholar
  6. 6.
    Guo, W., Cui, S., Torrion, J., Rajan, N.: Data-driven precision agriculture: opportunities and challenges. In: Soil-Specific Farming, pp. 366–385. CRC Press (2015)Google Scholar
  7. 7.
    Jiang, Z., Liu, C., Hendricks, N.P., Ganapathysubramanian, B., Hayes, D.J., Sarkar, S.: Predicting county level corn yields using deep long short term memory models, arXiv preprint arXiv:1805.12044 (2018)
  8. 8.
    Mkhabela, M., Bullock, P., Raj, S., Wang, S., Yang, Y.: Crop yield forecasting on the canadian prairies using MODIS NDVI data. Agric. Forest Meteorol. 151(3), 385–393 (2011)CrossRefGoogle Scholar
  9. 9.
    Bolton, D.K., Friedl, M.A.: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. Forest Meteorol. 173, 74–84 (2013)CrossRefGoogle Scholar
  10. 10.
    Schlenker, W., Roberts, M.J.: Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. 106(37), 15594–15598 (2009)CrossRefGoogle Scholar
  11. 11.
    Lobell, D.B., Burke, M.B.: On the use of statistical models to predict crop yield responses to climate change. Agric. Forest Meteorol. 150(11), 1443–1452 (2010)CrossRefGoogle Scholar
  12. 12.
    Dahikar, S.S., Rode, S.V.: Agricultural crop yield prediction using artificial neural network approach. IJIREEICE 2(1), 683–686 (2014)Google Scholar
  13. 13.
    Oliveira, I., Cunha, R.L., Silva, B., Netto, M.A.: A scalable machine learning system for pre-season agriculture yield forecast, arXiv preprint arXiv:1806.09244 (2018)
  14. 14.
    You, J., Li, X., Low, M., Lobell, D., Ermon, S.: Deep Gaussian process for crop yield prediction based on remote sensing data. In: AAAI, pp. 4559–4566 (2017)Google Scholar
  15. 15.
    Ji, B., Sun, Y., Yang, S., Wan, J.: Artificial neural networks for rice yield prediction in mountainous regions. J. Agric. Sci. 145(3), 249–261 (2007)CrossRefGoogle Scholar
  16. 16.
    Zhao, L., Sun, Q., Ye, J., Chen, F., Lu, C.-T., Ramakrishnan, N.: Multi-task learning for spatio-temporal event forecasting. In: Proceedings of KDD 2015, pp. 1503–1512. ACM (2015)Google Scholar
  17. 17.
    Zhou, J., Yuan, L., Liu, J., Ye, J.: A multi-task learning formulation for predicting disease progression. In: Proceedings of KDD 2011, pp. 814–822. ACM (2011)Google Scholar
  18. 18.
    Balikas, G., Moura, S., Amini, M.-R.: Multitask learning for fine-grained Twitter sentiment analysis. In: Proceedings of SIGIR 2017, pp. 1005–1008. ACM (2017)Google Scholar
  19. 19.
    Zhang, Y., Zhang, P., Yan, Y.: Attention-based LSTM with multi-task learning for distant speech recognition. In: Interspeech 2017, pp. 3857–3861 (2017)Google Scholar
  20. 20.
    Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., Feris, R.S.: Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification. In: CVPR, vol. 1, no. 2, p. 6 (2017)Google Scholar
  21. 21.
    Xu, J., Tan, P.-N., Zhou, J., Luo, L.: Online multi-task learning framework for ensemble forecasting. IEEE Trans. Knowl. Data Eng. 29(6), 1268–1280 (2017)CrossRefGoogle Scholar
  22. 22.
    Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction, arXiv preprint arXiv:1802.08714 (2018)
  23. 23.
    Hanna, A., Harlan, P., Lewis, D.: Soil available water as influenced by landscape position and aspect 1. Agron. J. 74(6), 999–1004 (1982)CrossRefGoogle Scholar
  24. 24.
    Kitchen, N., Sudduth, K., Drummond, S.: Soil electrical conductivity as a crop productivity measure for claypan soils. J. Prod. Agric. 12(4), 607–617 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Long H. Nguyen
    • 1
    Email author
  • Jiazhen Zhu
    • 2
  • Zhe Lin
    • 3
  • Hanxiang Du
    • 1
  • Zhou Yang
    • 1
  • Wenxuan Guo
    • 3
  • Fang Jin
    • 1
  1. 1.Department of Computer ScienceTexas Tech UniversityLubbockUSA
  2. 2.Department of Computer ScienceGeorge Washington UniversityWashington, D.C.USA
  3. 3.Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA

Personalised recommendations