Hawkes Process with Stochastic Triggering Kernel

  • Feng ZhouEmail author
  • Yixuan Zhang
  • Zhidong Li
  • Xuhui Fan
  • Yang Wang
  • Arcot Sowmya
  • Fang Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11439)


The impact from past to future is a vital feature in modelling time series data, which has been described by many point processes, e.g. the Hawkes process. In classical Hawkes process, the triggering kernel is assumed to be a deterministic function. However, the triggering kernel can vary with time due to the system uncertainty in real applications. To model this kind of variance, we propose a Hawkes process variant with stochastic triggering kernel, which incorporates the variation of triggering kernel over time. In this model, the triggering kernel is considered to be an independent multivariate Gaussian distribution. We derive and implement a tractable inference algorithm based on variational auto-encoder. Results from synthetic and real data experiments show that the underlying mean triggering kernel and variance band can be recovered, and using the stochastic triggering kernel is more accurate than the vanilla Hawkes process in capacity planning.


Hawkes process Stochastic triggering kernel 


  1. 1.
    Adams, R.P., Murray, I., MacKay, D.J.: Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 9–16. ACM (2009)Google Scholar
  2. 2.
    Cox, D.R.: Some statistical methods connected with series of events. J. Roy. Stat. Soc. Ser. B (Methodol.) 17, 129–164 (1955)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cunningham, J.P., Byron, M.Y., Shenoy, K.V., Sahani, M.: Inferring neural firing rates from spike trains using Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 329–336 (2008)Google Scholar
  4. 4.
    Cunningham, J.P., Shenoy, K.V., Sahani, M.: Fast Gaussian process methods for point process intensity estimation. In: Proceedings of the 25th International Conference on Machine Learning, pp. 192–199. ACM (2008)Google Scholar
  5. 5.
    Dassios, A., Zhao, H., et al.: Exact simulation of Hawkes process with exponentially decaying intensity. Electron. Commun. Probab. 18, 1–13 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)
  7. 7.
    Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recurrent marked temporal point processes: embedding event history to vector. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1555–1564. ACM (2016)Google Scholar
  8. 8.
    Embrechts, P., Liniger, T., Lin, L.: Multivariate Hawkes processes: an application to financial data. J. Appl. Probab. 48(A), 367–378 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gregory, P., Loredo, T.J.: A new method for the detection of a periodic signal of unknown shape and period. Astrophys. J. 398, 146–168 (1992)CrossRefGoogle Scholar
  10. 10.
    Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1), 83–90 (1971)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
  12. 12.
    Lee, Y., Lim, K.W., Ong, C.S.: Hawkes processes with stochastic excitations. In: International Conference on Machine Learning, pp. 79–88 (2016)Google Scholar
  13. 13.
    Menon, A.K., Lee, Y.: Predicting short-term public transport demand via inhomogeneous Poisson processes. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2207–2210. ACM (2017)Google Scholar
  14. 14.
    Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106(493), 100–108 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Møller, J., Syversveen, A.R., Waagepetersen, R.P.: Log gaussian cox processes. Scand. J. Stat. 25(3), 451–482 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ogata, Y., Vere-Jones, D.: Inference for earthquake models: a self-correcting model. Stoch. Process. Appl. 17(2), 337–347 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ogata, Y.: On lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27(1), 23–31 (1981)CrossRefGoogle Scholar
  18. 18.
    Rodriguez, M.G., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697 (2011)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Feng Zhou
    • 1
    • 4
    Email author
  • Yixuan Zhang
    • 2
  • Zhidong Li
    • 3
    • 4
  • Xuhui Fan
    • 1
  • Yang Wang
    • 3
    • 4
  • Arcot Sowmya
    • 1
  • Fang Chen
    • 3
    • 4
  1. 1.University of New South WalesSydneyAustralia
  2. 2.The University of SydneySydneyAustralia
  3. 3.University of Technology SydneySydneyAustralia
  4. 4.CSIRO DATA61SydneyAustralia

Personalised recommendations