Similarity-Aware Deep Attentive Model for Clickbait Detection

  • Manqing DongEmail author
  • Lina Yao
  • Xianzhi Wang
  • Boualem Benatallah
  • Chaoran Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11440)


Clickbait is a type of web content advertisements designed to entice readers into clicking accompanying links. Usually, such links will lead to articles that are either misleading or non-informative, making the detection of clickbait essential for our daily lives. Automated clickbait detection is a relatively new research topic. Most recent work handles the clickbait detection problem with deep learning approaches to extract features from the meta-data of content. However, little attention has been paid to the relationship between the misleading titles and the target content, which we found to be an important clue for enhancing clickbait detection. In this work, we propose a deep similarity-aware attentive model to capture and represent such similarities with better expressiveness. In particular, we present the ways of either using similarity only or integrating it with other available quality features for the clickbait detection. We evaluate our model on two benchmark datasets, and the experimental results demonstrate the effectiveness of our approach by outperforming a series of competitive state-of-the-arts and baseline methods.


  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
  2. 2.
    Biyani, P., Tsioutsiouliklis, K., Blackmer, J.: 8 amazing secrets for getting more clicks: detecting clickbaits in news streams using article informality. In: AAAI, pp. 94–100 (2016)Google Scholar
  3. 3.
    Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing clickbait as false news. In: Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, pp. 15–19. ACM (2015)Google Scholar
  4. 4.
    Dong, M., Yao, L., Wang, X., Benatallah, B., Sheng, Q.Z., Huang, H.: DUAL: a deep unified attention model with latent relation representations for fake news detection. In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE 2018. LNCS, vol. 11233, pp. 199–209. Springer, Cham (2018). Scholar
  5. 5.
    Glenski, M., Ayton, E., Arendt, D., Volkova, S.: Fishing for clickbaits in social images and texts with linguistically-infused neural network models. arXiv preprint arXiv:1710.06390 (2017)
  6. 6.
    Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: International Conference on Information & Knowledge Management, pp. 2333–2338. ACM (2013)Google Scholar
  7. 7.
    Kumar, V., Khattar, D., Gairola, S., Kumar Lal, Y., Varma, V.: Identifying clickbait: a multi-strategy approach using neural networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1225–1228. ACM (2018)Google Scholar
  8. 8.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  9. 9.
    Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)
  10. 10.
    Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Palangi, H., et al.: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 24(4), 694–707 (2016)CrossRefGoogle Scholar
  12. 12.
    Potthast, M., Köpsel, S., Stein, B., Hagen, M.: Clickbait detection. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 810–817. Springer, Cham (2016). Scholar
  13. 13.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010Google Scholar
  14. 14.
    Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: ACM International Conference on Conference on Information and Knowledge Management, pp. 101–110. ACM (2014)Google Scholar
  15. 15.
    Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37, 141–188 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, D., Lu, H., Bo, C.: Visual tracking via weighted local cosine similarity. IEEE Trans. Cybern. 45(9), 1838–1850 (2015)CrossRefGoogle Scholar
  17. 17.
    Wang, X., et al.: Truth discovery via exploiting implications from multi-source data. In: Conference on Information and Knowledge Management, pp. 861–870. ACM (2016)Google Scholar
  18. 18.
    Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)Google Scholar
  19. 19.
    Zheng, H.T., Chen, J.Y., Yao, X., Sangaiah, A.K., Jiang, Y., Zhao, C.Z.: Clickbait convolutional neural network. Symmetry 10(5), 138 (2018)CrossRefGoogle Scholar
  20. 20.
    Zhou, Y.: Clickbait detection in tweets using self-attentive network. arXiv preprint arXiv:1710.05364 (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manqing Dong
    • 1
    Email author
  • Lina Yao
    • 1
  • Xianzhi Wang
    • 2
  • Boualem Benatallah
    • 1
  • Chaoran Huang
    • 1
  1. 1.Department of Computer ScienceUniversity of New South WalesSydneyAustralia
  2. 2.School of SoftwareUniversity of Technology SydneySydneyAustralia

Personalised recommendations