How Much Can A Retailer Sell? Sales Forecasting on Tmall

  • Chaochao ChenEmail author
  • Ziqi Liu
  • Jun Zhou
  • Xiaolong Li
  • Yuan Qi
  • Yujing Jiao
  • Xingyu Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11440)


Time-series forecasting is an important task in both academic and industry, which can be applied to solve many real forecasting problems like stock, water-supply, and sales predictions. In this paper, we study the case of retailers’ sales forecasting on Tmall—the world’s leading online B2C platform. By analyzing the data, we have two main observations, i.e., sales seasonality after we group different groups of retails and a Tweedie distribution after we transform the sales (target to forecast). Based on our observations, we design two mechanisms for sales forecasting, i.e., seasonality extraction and distribution transformation. First, we adopt Fourier decomposition to automatically extract the seasonalities for different categories of retailers, which can further be used as additional features for any established regression algorithms. Second, we propose to optimize the Tweedie loss of sales after logarithmic transformations. We apply these two mechanisms to classic regression models, i.e., neural network and Gradient Boosting Decision Tree, and the experimental results on Tmall dataset show that both mechanisms can significantly improve the forecasting results.


Sales forecasting Tweedie distribution Distribution transform Seasonality extraction 


  1. 1.
    Ahmed, N.K., Atiya, A.F., Gayar, N.E., El-Shishiny, H.: An empirical comparison of machine learning models for time series forecasting. Econometr. Rev. 29(5–6), 594–621 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Azoff, E.M.: Neural Network Time Series Forecasting of Financial Markets. Wiley, Hoboken (1994)Google Scholar
  3. 3.
    Bianco, V., Manca, O., Nardini, S.: Electricity consumption forecasting in italy using linear regression models. Energy 34(9), 1413–1421 (2009)CrossRefGoogle Scholar
  4. 4.
    Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)zbMATHGoogle Scholar
  5. 5.
    Cadenas, E., Rivera, W.: Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renew. Energy 35(12), 2732–2738 (2010)CrossRefGoogle Scholar
  6. 6.
    Carbonneau, R., Laframboise, K., Vahidov, R.: Application of machine learning techniques for supply chain demand forecasting. Eur. J. Oper. Res. 184(3), 1140–1154 (2008)CrossRefGoogle Scholar
  7. 7.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)Google Scholar
  8. 8.
    Hannan, E.J.: Multiple Time Series, vol. 38. Wiley, Hoboken (2009)Google Scholar
  9. 9.
    Jorgensen, B.: Exponential dispersion models. J. Roy. Stat. Soc. Ser. B (Methodol.) 49, 127–162 (1987)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kavasseri, R.G., Seetharaman, K.: Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 34(5), 1388–1393 (2009)CrossRefGoogle Scholar
  11. 11.
    Kim, K.J.: Financial time series forecasting using support vector machines. Neurocomputing 55(1–2), 307–319 (2003)CrossRefGoogle Scholar
  12. 12.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  13. 13.
    Lee, M.H., Rahman, N.H.A., Latif, M.T., Nor, M.E., Kamisan, N.A.B., et al.: Seasonal ARIMA for forecasting air pollution index: a case study. Am. J. Appl. Sci. 9(4), 570–578 (2012)CrossRefGoogle Scholar
  14. 14.
    Liao, T.W.: Clustering of time series data—a survey. Pattern Recogn. 38(11), 1857–1874 (2005)CrossRefGoogle Scholar
  15. 15.
    Liu, D., Niu, D., Wang, H., Fan, L.: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew. Energy 62, 592–597 (2014)CrossRefGoogle Scholar
  16. 16.
    Makridakis, S., Hibon, M.: The M3-competition: results, conclusions and implications. Int. J. Forecast. 16(4), 451–476 (2000)CrossRefGoogle Scholar
  17. 17.
    Pai, P.F., Lin, C.S.: A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33(6), 497–505 (2005)CrossRefGoogle Scholar
  18. 18.
    Park, D.C., El-Sharkawi, M., Marks, R., Atlas, L., Damborg, M.: Electric load forecasting using an artificial neural network. IEEE Trans. Pow. Syst. 6(2), 442–449 (1991)CrossRefGoogle Scholar
  19. 19.
    Pufnik, A., Kunovac, D., et al.: Short-term forecasting of inflation in Croatia with seasonal ARIMA processes. Technical report (2006)Google Scholar
  20. 20.
    Qi, M., Zhang, G.P.: Trend time-series modeling and forecasting with neural networks. IEEE Trans. Neural Netw. 19(5), 808–816 (2008)CrossRefGoogle Scholar
  21. 21.
    Sun, H., Liu, H., Xiao, H., He, R., Ran, B.: Use of local linear regression model for short-term traffic forecasting. Transp. Res. Rec.: J. Transp. Res. Board 1836, 143–150 (2003)CrossRefGoogle Scholar
  22. 22.
    Tweedie, M.: An index which distinguishes between some important exponential families. In: Statistics: Applications and New Directions: Proceedings of Indian Statistical Institute Golden Jubilee International Conference, pp. 579–604 (1984)Google Scholar
  23. 23.
    Yang, Y., Qian, W., Zou, H.: Insurance premium prediction via gradient tree-boosted Tweedie compound Poisson models. J. Bus. Econ. Stat. 36, 1–15 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yinga, X., Jungangb, C.: Traffic flow forecasting method based on gradient boosting decision tree (2017)Google Scholar
  25. 25.
    Zhang, G.P.: Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003)CrossRefGoogle Scholar
  26. 26.
    Zhou, J., et al.: KunPeng: parameter server based distributed learning systems and its applications in Alibaba and ant financial. In: SIGKDD, pp. 1693–1702 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chaochao Chen
    • 1
    Email author
  • Ziqi Liu
    • 1
  • Jun Zhou
    • 1
  • Xiaolong Li
    • 1
  • Yuan Qi
    • 1
  • Yujing Jiao
    • 1
  • Xingyu Zhong
    • 1
  1. 1.Ant Financial Services GroupHangzhouChina

Personalised recommendations