Advertisement

Transient Middle Cerebral Artery Occlusion Model in Rodents

  • Ying Mao
  • Wei Zhu
  • Guo-Yuan YangEmail author
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Rodent transient middle cerebral artery occlusion (MCAO) is one of the widely used focal ischemia models in the world. This model mimics human cerebral ischemic injury and provides a unique tool for the mechanistic studies of ischemia in brain tissues in vivo. Rodent ischemia and reperfusion models are commonly used because of a greater understanding of rodent genetics, the availability of specific antibodies to rodent epitopes and molecular probes in rodents, and the ability to study transgenic mouse strains. In this chapter, we discuss: (1) the preparation of MCAO in rodents; (2) the intra-luminal MCAO techniques and its modifications; (3) the quantitative evaluation of model success; and (4) the advantages and limitations of MCAO models.

Keywords

Blood flow Infarct volume Middle cerebral artery occlusion Rodent Transient focal ischemia 

References

  1. 1.
    Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1:61–9.CrossRefGoogle Scholar
  2. 2.
    Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1:53–60.CrossRefGoogle Scholar
  3. 3.
    Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. I: A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 1986;8:1–8.CrossRefGoogle Scholar
  4. 4.
    Zea-Longa E, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91.CrossRefGoogle Scholar
  5. 5.
    Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 1996;27:1616–22; discussion 1623.CrossRefGoogle Scholar
  6. 6.
    Yang GY, Chan PH, Chen J, et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke. 1994;25:165–70.CrossRefGoogle Scholar
  7. 7.
    Yang GY, Liu XH, Kadoya C, Zhao YJ, Betz AL. Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist. J Cereb Blood Flow Metab. 1998;18:840–7.CrossRefGoogle Scholar
  8. 8.
    Mao Y, Yang GY, Zhou LF, Stern JD, Betz AL. Focal cerebral ischemia in the mouse: description of a model and effects of permanent and temporary occlusion. Brain Res Mol Brain Res. 1999;63:366–70.CrossRefGoogle Scholar
  9. 9.
    Zhang ZG, Zhang L, Ding G, et al. A model of mini-embolic stroke offers measurements of the neurovascular unit response in the living mouse. Stroke. 2005;36:2701–4.CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Chopp M, Zhang RL, Goussev A. A mouse model of embolic focal cerebral ischemia. J Cereb Blood Flow Metab. 1997;17:1081–8.CrossRefGoogle Scholar
  11. 11.
    Zhang RL, Chopp M, Zhang ZG, Jiang Q, Ewing JR. A rat model of focal embolic cerebral ischemia. Brain Res. 1997;766:83–92.CrossRefGoogle Scholar
  12. 12.
    Wei L, Rovainen CM, Woolsey TA. Ministrokes in rat barrel cortex. Stroke. 1995;26:1459–62.CrossRefGoogle Scholar
  13. 13.
    Zhao YJ, Yang GY, Domino EF. Zinc protoporphyrin, zinc ion, and protoporphyrin reduce focal cerebral ischemia. Stroke. 1996;27:2299–303.CrossRefGoogle Scholar
  14. 14.
    Won SJ, Xie L, Kim SH, et al. Influence of age on the response to fibroblast growth factor-2 treatment in a rat model of stroke. Brain Res. 2006;1123:237–44.CrossRefGoogle Scholar
  15. 15.
    Dirnagl U, Pulsinelli W. Autoregulation of cerebral blood flow in experimental focal brain ischemia. J Cereb Blood Flow Metab. 1990;10(3):327–36.CrossRefGoogle Scholar
  16. 16.
    Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W. Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab. 1989;9:589–96.CrossRefGoogle Scholar
  17. 17.
    Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenylterazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17(6):1304–8.CrossRefGoogle Scholar
  18. 18.
    Lundy EF, Solik BS, Frank RS, et al. Morphometric evaluation of brain infarcts in rats and gerbils. J Pharmacol Methods. 1986;16:201–14.CrossRefGoogle Scholar
  19. 19.
    Swanson RA, Morton MT, Tsao WG, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990;10:290–3.CrossRefGoogle Scholar
  20. 20.
    Yang GY, Pang L, Ge HL, et al. Attenuation of ischemia-induced mouse brain injury by SAG, a redox-inducible antioxidant protein. J Cereb Blood Flow Metab. 2001;21:722–33.CrossRefGoogle Scholar
  21. 21.
    Borlongan CV, Saporta S, Poulos SG, Othberg A, Sanberg PR. Viability and survival of hNT neurons determine degree of functional recovery in grafted ischemic rats. Neuroreport. 1998;9:2837–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery and Institute of Neurosurgery, Huashan HospitalFudan University School of MedicineShanghaiChina
  2. 2.Department of Anesthesia and Perioperative Care, Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations