Advertisement

A Rat Model of Cerebellar Hemorrhage Using Bacterial Collagenase Injection

  • Devin W. McBride
  • Tim Lekic
  • Jiping Tang
  • John H. ZhangEmail author
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Cerebellar hemorrhage causes unique functional deficits, including ataxic, sensorimotor, and memory deficiencies. Despite the occurrence of CH, most studies have focused on intracerebral hemorrhage. Yet, the unique behavioral deficits of CH necessitates attention for the development of treatments. This chapter details the bacterial collagenase injection model for creating cerebellar hemorrhage. This model is unique in that it leads to reproducible postural deficits caused by a well-defined hemorrhage within the cerebellum. Cerebellar hemorrhage leads to acute increases in brain water content and acute sensorimotor and postural deficits, as well as long-term sensorimotor and memory deficits due to cerebellar tissue atrophy. Herein, the surgical procedures, evaluation of outcomes, caveats, limitations, and alternatives are described.

Keywords

Cerebellum Collagenase Stroke Cerebellar hemorrhage CH Rat 

Supplementary material

Video 1

(MPG 23872 kb)

References

  1. 1.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44.CrossRefGoogle Scholar
  2. 2.
    Sutherland GR, Auer RN. Primary intracerebral hemorrhage. J Clin Neurosci. 2006;13:511–7.CrossRefGoogle Scholar
  3. 3.
    Hill MD, Silver FL, Austion PC, Tu JV. Rate of stroke recurrence in patients with primary intracerebral hemorrhage. Stroke. 2000;31:123–7.CrossRefGoogle Scholar
  4. 4.
    Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.CrossRefGoogle Scholar
  5. 5.
    Dykstra-Aiello C, Jickling GC, Ander BP, et al. Intracerebral hemorrhage and ischemic stroke of different etiologies have distinct alternatively spliced mRNA profiles in the blood: a pilot RNA-seq study. Transl Stroke Res. 2015;6(4):284–9.CrossRefGoogle Scholar
  6. 6.
    Schlunk F, Greenberg SM. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl Stroke Res. 2015;6(4):257–63.CrossRefGoogle Scholar
  7. 7.
    Schlunk F, Schulz E, Lauer A, et al. Warfarin pretreatment reduces cell death and MMP-9 activity in experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6(2):133–9.CrossRefGoogle Scholar
  8. 8.
    Selim M, Sheth KN. Perihematoma edema: a potential translational target in intracerebral hemorrhage? Transl Stroke Res. 2015;6(2):104–6.CrossRefGoogle Scholar
  9. 9.
    Sukumari-Ramesh S, Alleyne CH Jr, Dhandapani KM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) confers acute neuroprotection after intracerebral hemorrhage in mice. Transl Stroke Res. 2016;7(2):141–8.CrossRefGoogle Scholar
  10. 10.
    Xiong XY, Yang QW. Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl Stroke Res. 2015;6(5):339–41.CrossRefGoogle Scholar
  11. 11.
    Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6(6):407–9.CrossRefGoogle Scholar
  12. 12.
    Zheng M, Du H, Ni W, et al. Iron-induced necrotic brain cell death in rats with different aerobic capacity. Transl Stroke Res. 2015;6(3):215–23.CrossRefGoogle Scholar
  13. 13.
    Cossu M, Dorcaratto A, Pau A, et al. Changes in infratentorial blood flow following experimental cerebellar haemorrhage. A preliminary report. Ital J Neurol Sci. 1991;12(3 Suppl 11):69–73.PubMedGoogle Scholar
  14. 14.
    Cossu M, Pau A, Siccardi D, Viale GL. Infratentorial ischaemia following experimental cerebellar haemorrhage in the rat. Acta Neurochir. 1994;131(1–2):146–50.CrossRefGoogle Scholar
  15. 15.
    Lekic T, Tang J, Zhang JH. Rat model of intracerebellar hemorrhage. Acta Neurochir Suppl. 2008;105:131–4.CrossRefGoogle Scholar
  16. 16.
    Lekic T, Ostrowski RP, Suzuki H, et al. The postpartum period of pregnancy worsens brain injury and functional outcome after cerebellar hemorrhage in rats. Acta Neurochir Suppl. 2011;111:37–41.CrossRefGoogle Scholar
  17. 17.
    Lekic T, Rolland W, Hartman R, et al. Characterization of the brain injury, neurobehavioral profiles, and histopathology in a rat model of cerebellar hemorrhage. Exp Neurol. 2011;227(1):96–103.CrossRefGoogle Scholar
  18. 18.
    Tang JP, Liu J, Zhou CM, et al. MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab. 2004;24(10):1133–45.CrossRefGoogle Scholar
  19. 19.
    Lei B, Sheng H, Wang H, et al. Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp. 2014;(89).  https://doi.org/10.3791/51439.
  20. 20.
    MacLellan CL, Silasi G, Auriat AM, Colbourne F. Rodent models of intracerebral hemorrhage. Stroke. 2010;41(10 Suppl):S95–8.CrossRefGoogle Scholar
  21. 21.
    MacLellan CL, Silasi G, Poon CC, et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 2008;28(3):516–25.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Devin W. McBride
    • 1
  • Tim Lekic
    • 1
  • Jiping Tang
    • 1
  • John H. Zhang
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Physiology and PharmacologyLoma Linda University School of MedicineLoma LindaUSA
  2. 2.Department of NeurosurgeryLoma Linda University School of MedicineLoma LindaUSA
  3. 3.Department of AnesthesiologyLoma Linda University School of MedicineLoma LindaUSA

Personalised recommendations