Advertisement

A Semi-analytical Solution for One-Dimensional Oil Displacement by Miscible Gas in a Homogeneous Porous Medium

  • Luana C. M. Cantagesso
  • Luara K. S. Sousa
  • Tamires A. Marotto
  • Anna M. Radovanovic
  • Adolfo Puime Pires
  • Alvaro M. M. Peres
Chapter

Abstract

In an enhanced oil recovery (EOR) project, materials not present in the reservoir are injected to improve the final oil recovery. Historically, gas flooding has been the second most applied EOR method. Recently, carbon dioxide injection has become more attractive because it is also environmentally friendly. In this chapter, we present a solution for oil displacement by miscible gas injection at constant rate. Our model considers a three-component, two-phase, 1-D incompressible flow in a homogeneous isothermal system. Dispersion, gravity, and capillary effects are neglected. Moreover, it is assumed that Amagat’s law is valid and that viscosity depends on the phase composition only. This problem is governed by a system of two hyperbolic equations and is solved by the method of characteristics for saturation and concentrations. Then, the pressure profile is obtained by integrating Darcy’s law over the spatial domain. This general solution is applied to a typical set of rock and fluid data.

Notes

Acknowledgements

The authors wish to express their gratitude for the financial support provided by the Brazilian Government Agencies CAPES and CNPq, by Petrobras SIGER Research Network, and by the Universidade Estadual do Norte Fluminense (UENF).

References

  1. [Be93]
    Bedrikovetsky, P. G.: Mathematical Theory of Oil and Gas Recovery, Kluwer Academic Publishers, London (1993).CrossRefGoogle Scholar
  2. [Bu42]
    Buckley, S. E., and Leverett, M. C.: Mechanisms of fluid displacement in sands. Amer. Inst. Min. Metall. Pet. Eng., 146, 107–116 (1942).Google Scholar
  3. [CoEtAl56]
    Corey, A. T., Rathjens, C. H., Henderson, J. H., and Wyllie, M. R. J.: Three-phase relative permeability. J. Can. Pet. Technol., 8, 63–65 (1956).CrossRefGoogle Scholar
  4. [Ko14]
    Koottungal, L.: Survey: Miscible CO2 continues to eclipse steam in US EOR production. Oil & Gas Journal, 112.4, 78–91 (2014).Google Scholar
  5. [La89]
    Lake, W. L.: Enhanced Oil Recovery, Prentice-Hall, Englewood Cliffs, NJ (1989).Google Scholar
  6. [Ma00]
    Malik, M. M., and Islam, M. R.: CO2 Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas storage with horizontal wells. In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, SPE 59327 (2000).Google Scholar
  7. [Mc95]
    McGuire, P. L., and Stalkup F.I.: Performance analysis and optimization of the Prudhoe Bay miscible-gas project. SPE Reservoir Engineering, 10, 88–93, SPE 22398 (1995).CrossRefGoogle Scholar
  8. [Mi92]
    Mizenko, G. J.: North Cross (Devonian) Unit CO2 Flood: Status Report. In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, SPE 24210 (1992).Google Scholar
  9. [Or84]
    Orr Jr., F. M., and Taber, J. J.: Use of carbon dioxide in Enhanced Oil Recovery. Science, 24, 563–569 (1984).CrossRefGoogle Scholar
  10. [Or07]
    Orr Jr., F. M.: Theory of Gas Injection Processes, Tie-Line Publications, Copenhagen, Denmark (2007).Google Scholar
  11. [Pe03]
    Peres, A. M. M., and Reynolds, A. C.: Theory and analysis of injectivity tests on horizontal wells. SPE J., 8(2), 147–159, SPE 84957 (2003).CrossRefGoogle Scholar
  12. [Pe06]
    Pedersen, K. S., and Christensen, P. L.: Phase Behavior of Petroleum Reservoir Fluids, Taylor & Francis Group, Boca Raton, FL (2006).Google Scholar
  13. [Pi05]
    Pires, A. P., and Bedrikovetsky, P. G.: Analytical modeling of 1D n-component miscible displacement of ideal fluids. In SPE Latin American and Caribbean Petroleum Engineering, Rio de Janeiro, Brazil, SPE 94855 (2005).Google Scholar
  14. [PR76]
    Peng, D. Y., and Robinson, D. B.: A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15, 59–64 (1976).CrossRefGoogle Scholar
  15. [PrEtAl86]
    Prausnitz, J. M., Lichtenthaler, R. N., and Azevedo, E. G.: Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986).Google Scholar
  16. [Sc17]
    Scardini, R. B.: Utilizacão de um algoritmo genético para agrupamento de componentes de petróleo condicionada a experimentos PVT. M.Sc. Thesis, Universidade Estadual do Norte Fluminense, Macaé (2017).Google Scholar
  17. [Sh02]
    Shaw, J., and Bachu, S.: Screening, evaluation, and ranking of oil reservoirs suitable for CO2-flood EOR and carbon dioxide sequestration. Journal of Canadian Petroleum Technology, 41, 51–61 (2002).CrossRefGoogle Scholar
  18. [Ta92]
    Tanner, C. S., Baxley, P. T., Crump, J. G., and Miller, W. C.: Production performance of the Wasson Denver unit CO2 flood. In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, SPE 24156 (1992).Google Scholar
  19. [Va86]
    Varotsis, N., Stewart G., Todd, A. C., and Clancy, M.: Phase behavior of systems comprising North Sea reservoir fluids and injection gases. Journal of Petroleum Technology, 41, 1221–1233, SPE 12647 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luana C. M. Cantagesso
    • 1
  • Luara K. S. Sousa
    • 1
  • Tamires A. Marotto
    • 1
  • Anna M. Radovanovic
    • 1
  • Adolfo Puime Pires
    • 1
  • Alvaro M. M. Peres
    • 1
  1. 1.Universidade Estadual do Norte FluminenseMacaéBrazil

Personalised recommendations