Advertisement

Decomposition of Solutions of the Wave Equation into Poincaré Wavelets

  • Maria V. PerelEmail author
  • Evgeny A. Gorodnitskiy
Chapter

Abstract

An integral representation of solutions of the wave equation in terms of elementary solutions with known properties is constructed. This representation is found by affine Poincaré continuous wavelet analysis. The efficiency of the formulas derived in this way for an applied problem is also discussed.

References

  1. [Ka94]
    Kaiser, G.: A Friendly Guide to Wavelets, Birkhäuser (1994).Google Scholar
  2. [AnEtAl94]
    Antoine, J.-P., Murenzi, R., Vandergheynst, P., and Ali, S. T.: Two-Dimensional Wavelets and their Relatives, Cambridge University Press (1994).Google Scholar
  3. [BaUl81]
    Babich, V. M., and Ulin, V. V.: The complex space-time ray method and “quasi-photons”. (Russian). In Mathematical questions in the theory of wave propagation. 12 Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 117, 5–12 (1981). Transl. J. Soviet Math., 24, 269–274 (1984).Google Scholar
  4. [Ka84]
    Kachalov, A. P.: A coordinate system for describing the “quasiphoton”. In Mathematical questions in the theory of wave propagation. 14 Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 140, 73–76 (1984). Transl. J. Soviet Math., 32, 151–153 (1986).Google Scholar
  5. [Po07]
    Popov, M. M.: A new method for calculating wave fields in high-frequency approximation. (Russian). In Mat. Vopr. Teor. Rasprostr. Voln.. 36 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 342, 5–13 (2007). Transl. J. Math. Sci., N.Y. 148, 633–638 (2008).Google Scholar
  6. [ShEtAl04]
    Shlivinski, A., Heyman, E., Boag, A., and Letrou, C.: A phase-space beam summation formulation for ultrawide-band radiation. IEEE Transactions on Antennas and Propagation, 52, 2042–2056 (2004).CrossRefGoogle Scholar
  7. [PoEtAl10]
    Popov, M. M., Semtchenok, N. M., Popov, P. M., and Verdel, A. R.: Depth migration by the Gaussian beam summation method. Geophysics, 75, S81–S93 (2010).CrossRefGoogle Scholar
  8. [LeHe17]
    Leibovich, M., and Heyman, E.: Beam Summation Theory for Waves in Fluctuating Media. Part I: The Beam Frame and the Beam-Domain Scattering Matrix. IEEE Transactions on Antennas and Propagation, 65, 5431–5442 (2017).MathSciNetCrossRefGoogle Scholar
  9. [Ba07]
    Babich, V. M.: Quasiphotons and the space-time ray method. (Russian) In Mathematical questions in the theory of wave propagation. 36 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 342, 5–13 (2007). Transl. J. Math. Sci. (N.Y.), 148, 633–638 (2008).Google Scholar
  10. [KiPe99]
    Kiselev, A.P., and Perel, M. V.: Gaussian wave packets. Optics and Spectroscopy, 86, pp. 307–309 (1999).Google Scholar
  11. [KiPe00]
    Kiselev, A.P., and Perel, M. V.: Highly localized solutions of the wave equation. J. Math. Phys., 41, pp. 1034–1955 (2000).MathSciNetCrossRefGoogle Scholar
  12. [PeSi03]
    Perel, M. V., and Sidorenko, M. S.: Wavelet analysis in solving the Cauchy problem for the wave equation in three-dimensional space. In Mathematical and Numerical Aspects of Wave Propagation: Waves 2003, G. C. Cohen (ed), Springer, Berlin (2003) pp.794–798.CrossRefGoogle Scholar
  13. [PeSi06]
    Perel, M. V., and Sidorenko, M. S.: Wavelet analysis for the solutions of the wave equation. In Proceedings of the International Conference Days on Diffraction, Saint-Petersburg (2006), pp. 208–217.Google Scholar
  14. [PeSi07]
    Perel, M. V., and Sidorenko, M. S.: New physical wavelet ‘Gaussian wave packet’. J. of Phys. A: Math. and Theor., 40, 3441 (2007).MathSciNetCrossRefGoogle Scholar
  15. [PeSi09]
    Perel, M. V., and Sidorenko, M. S.: Wavelet-based integral representation for solutions of the wave equation. J. of Phys. A: Math. and Theor., 42, 375211 (2009).MathSciNetCrossRefGoogle Scholar
  16. [Pe09]
    Perel, M. V.: Integral representation of solutions of the wave equation based on Poincaré wavelets. In Proceedings of the International Conference Days on Diffraction, Saint-Petersburg (2009), pp. 159–161.Google Scholar
  17. [GoPe11]
    Gorodnitskiy, E. A., and Perel, M. V.: The Poincaré wavelet transform: implementation and interpretation. In Proceedings of the International Conference Days on Diffraction, Saint-Petersburg (2011), pp. 72–77.Google Scholar
  18. [PeEtAl11]
    Perel, M., Sidorenko, M., and Gorodnitskiy, E.: Multiscale Investigation of Solutions of the Wave Equation. In Integral Methods in Science and Engineering, C. Constanda and M. E. Perez (eds.), Birkhäuser, Boston (2011), pp. 291–300.Google Scholar
  19. [PeGo12]
    Perel, M., and Gorodnitskiy, E.: Integral representations of solutions of the wave equation based on relativistic wavelets. J. of Phys. A: Math. and Theor., 45, 385203 (2012).MathSciNetCrossRefGoogle Scholar
  20. [GoEtAl16]
    Gorodnitskiy, E., Perel, M. V., Geng, Yu, and Wu, R.-S.: Depth migration with Gaussian wave packets based on Poincaré wavelets. Geophys. J. Int., 205, pp. 314–331 (2016).CrossRefGoogle Scholar
  21. [GoPe17]
    Gorodnitskiy, E. A., Perel, M. V.: Justification of a Wavelet-Based Integral Formula for Solutions of the Wave Equation. (Russian) In Mathematical questions in the theory of wave propagation. Part 47 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 461, 107–123 (2017). Transl. J. Math. Sci. (N.Y.), 238, pp. 630–640 (2019).Google Scholar
  22. [Ver94]
    Versteeg, R.: The Marmousi experience: Velocity model determination on a synthetic complex data set. The Leading Edge, 13, 927–936 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Saint Petersburg UniversitySaint PetersburgRussia

Personalised recommendations