Advertisement

Vitamin B1, B2, B3, B5, and B6 and the Immune System

  • Kathleen Mikkelsen
  • Vasso ApostolopoulosEmail author
Chapter

Abstract

Vitamins and minerals other than protein, carbohydrates, and fats are essential for life. B vitamins are water-soluble vitamins and cannot be stored in the body; thus, daily consumption is required. In particular, B vitamins are necessary for the proper functioning of the methylation cycle, DNA synthesis, and repair and maintenance of phospholipids. A decrease in the methylation function leads to chronic neurological disorders. Vitamin B1 (thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), and B6 (pyridoxine) aid in the conversion of food into energy and are essential for healthy skin, muscles, brain, and nerve functionality. In addition, pantothenic acid is involved in the production of lipids (fats), neurotransmitters, hormones, hemoglobin, and pyridoxine and plays a key role in sleep, appetite, and mood disorders.

Keywords

Immune system Niacin Pantothenic acid Pyridoxine Riboflavin Thiamine Vitamin B Vitamin B1 Vitamin B2 Vitamin B3 Vitamin B5 Vitamin B6 Vitamin B deficiency 

Notes

Acknowledgments

VA was supported by the Victoria University College of Health and Biomedicine start-up funds, and KM was supported by the Victoria University Vice-Chancellor’s Scholarship. VA and KM were also supported by the Institute for Health and Sport, Mechanisms and Interventions in Health and Disease Program, Victoria University, Australia.

References

  1. 1.
    Mikkelsen K, Hallam K, Stojanovska L, Apostolopoulos V. Yeast based spreads improve anxiety and stress. J Funct Foods. 2018;40:471–6.CrossRefGoogle Scholar
  2. 2.
    Mikkelsen K, Stojanovska L, Apostolopoulos V. The effects of vitamin B in depression. Curr Med Chem. 2016;23(38):4317–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Mikkelsen K, Stojanovska L, Polenakovic M, Bosevski M, Apostolopoulos V. Exercise and mental health. Maturitas. 2017;106:48–56.PubMedCrossRefGoogle Scholar
  4. 4.
    Mikkelsen K, Stojanovska L, Prakash M, Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas. 2017;96:58–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Mikkelsen K, Stojanovska L, Tangalakis K, Bosevski M, Apostolopoulos V. Cognitive decline: a vitamin B perspective. Maturitas. 2016;93:108–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee BY, Yanamandra K, Bocchini JA Jr. Thiamin deficiency: a possible major cause of some tumors? (review). Oncol Rep. 2005;14(6):1589–92.PubMedGoogle Scholar
  7. 7.
    Meador K, Loring D, Nichols M, Zamrini E, Rivner M, Posas H, et al. Preliminary findings of high-dose thiamine in dementia of Alzheimer’s type. J Geriatr Psychiatry Neurol. 1993;6(4):222–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Nemazannikova N, Mikkelsen K, Stojanovska L, Blatch GL, Apostolopoulos V. Is there a link between vitamin B and multiple sclerosis? Med Chem. 2018;14(2):170–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Nolan KA, Black RS, Sheu KF, Langberg J, Blass JP. A trial of thiamine in Alzheimer’s disease. Arch Neurol. 1991;48(1):81–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Swaiman KF, Ashwal S, Ferriero DM, Schor NF, Finkel RS, Gropman AL, et al. Swaiman’s pediatric neurology E-book: principles and practice. Edinburgh: Elsevier Health Sciences; 2017. p. e929.Google Scholar
  11. 11.
    Jhala SS, Hazell AS. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int. 2011;58(3):248–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferguson M, Dalve-Endres AM, McRee RC, Langlais PJ. Increased mast cell degranulation within thalamus in early pre-lesion stages of an experimental model of Wernicke’s encephalopathy. J Neuropathol Exp Neurol. 1999;58(7):773–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Onodera K, Maeyama K, Watanabe T. Regional changes in brain histamine levels following dietary-induced thiamine deficiency in rats. Jpn J Pharmacol. 1988;47(3):323–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Ke ZJ, Bowen WM, Gibson GE. Peripheral inflammatory mechanisms modulate microglial activation in response to mild impairment of oxidative metabolism. Neurochem Int. 2006;49(5):548–56.PubMedCrossRefGoogle Scholar
  15. 15.
    Spinas E, Saggini A, Kritas SK, Cerulli G, Caraffa A, Antinolfi P, et al. Crosstalk between vitamin B and immunity. J Biol Regul Homeost Agents. 2015;29(2):283–8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ke ZJ, Calingasan NY, Karuppagounder SS, DeGiorgio LA, Volpe BT, Gibson GE. CD40L deletion delays neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. J Neuroimmunol. 2005;164(1–2):85–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Calingasan NY, Chun WJ, Park LC, Uchida K, Gibson GE. Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol. 1999;58(9):946–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Bozic I, Savic D, Laketa D, Bjelobaba I, Milenkovic I, Pekovic S, et al. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia. PLoS One. 2015;10(2):e0118372.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Shoeb M, Ramana KV. Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic Biol Med. 2012;52(1):182–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Olkowski AA, Gooneratne SR, Christensen DA. Effects of diets of high sulphur content and varied concentrations of copper, molybdenum and thiamine on in vitro phagocytic and candidacidal activity of neutrophils in sheep. Res Vet Sci. 1990;48(1):82–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Molina PE, Yousef KA, Smith RM, Tepper PG, Lang CH, Abumrad NN. Thiamin deficiency impairs endotoxin-induced increases in hepatic glucose output. Am J Clin Nutr. 1994;59(5):1045–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Ottinger CA, Honeyfield DC, Densmore CL, Iwanowicz LR. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout. J Aquat Anim Health. 2012;24(4):258–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Kunisawa J, Sugiura Y, Wake T, Nagatake T, Suzuki H, Nagasawa R, et al. Mode of bioenergetic metabolism during B cell differentiation in the intestine determines the distinct requirement for vitamin B1. Cell Rep. 2015;13(1):122–31.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wen LM, Jiang WD, Liu Y, Wu P, Zhao J, Jiang J, et al. Evaluation the effect of thiamin deficiency on intestinal immunity of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015;46(2):501–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Ji Z, Fan Z, Zhang Y, Yu R, Yang H, Zhou C, et al. Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2. J Immunol. 2014;193(5):2157–67.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zaringhalam J, Akbari A, Zali A, Manaheji H, Nazemian V, Shadnoush M, et al. Long-term treatment by vitamin B1 and reduction of serum proinflammatory cytokines, hyperalgesia, and paw edema in adjuvant-induced arthritis. Basic Clin Neurosci. 2016;7(4):331–40.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kurashige S, Akuzawa Y, Fujii N, Kishi S, Takeshita M, Miyamoto Y. Effect of vitamin B complex on the immunodeficiency produced by surgery of gastric cancer patients. Jpn J Exp Med. 1988;58(4):197–202.PubMedGoogle Scholar
  28. 28.
    Dakshinamurti K. Vitamins and their derivatives in the prevention and treatment of metabolic syndrome diseases (diabetes). Can J Physiol Pharmacol. 2015;93(5):355–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Aleszczyk J, Mielanjin W, Chomicz T, Gurynowicz W, Osakowicz I, Suszko L, et al. Evaluation of vitamin and immune status of patients with chronic palatal tonsillitis. Otolaryngologia Polska/Otolaryngol Pol. 2001;55(1):65–7.PubMedGoogle Scholar
  30. 30.
    Mazur-Bialy AI, Pochec E, Plytycz B. Immunomodulatory effect of riboflavin deficiency and enrichment – reversible pathological response versus silencing of inflammatory activation. J Physiol Pharmacol. 2015;66(6):793–802.PubMedGoogle Scholar
  31. 31.
    Mazur-Bialy AI, Pochec E. Vitamin B2 deficiency enhances the pro-inflammatory activity of adipocyte, consequences for insulin resistance and metabolic syndrome development. Life Sci. 2017;178:9–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghazarian L, Caillat-Zucman S, Houdouin V. Mucosal-associated invariant T cell interactions with commensal and pathogenic bacteria: potential role in antimicrobial immunity in the child. Front Immunol. 2017;8:1837.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mazur-Bialy AI, Pochec E. HMGB1 inhibition during zymosan-induced inflammation: the potential therapeutic action of riboflavin. Arch Immunol Ther Exp. 2016;64(2):171–6.CrossRefGoogle Scholar
  34. 34.
    Toyosawa T, Suzuki M, Kodama K, Araki S. Potentiation by amino acid of the therapeutic effect of highly purified vitamin B2 in mice with lipopolysaccharide-induced shock. Eur J Pharmacol. 2004;493(1–3):177–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Dey S, Bishayi B. Riboflavin along with antibiotics balances reactive oxygen species and inflammatory cytokines and controls Staphylococcus aureus infection by boosting murine macrophage function and regulates inflammation. J Inflamm. 2016;13:36.CrossRefGoogle Scholar
  36. 36.
    Mazur-Bialy AI, Kolaczkowska E, Plytycz B. Modulation of zymosan-induced peritonitis by riboflavin co-injection, pre-injection or post-injection in male Swiss mice. Life Sci. 2012;91(25–26):1351–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Schramm M, Wiegmann K, Schramm S, Gluschko A, Herb M, Utermohlen O, et al. Riboflavin (vitamin B2) deficiency impairs NADPH oxidase 2 (Nox2) priming and defense against Listeria monocytogenes. Eur J Immunol. 2014;44(3):728–41.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Al-Harbi NO, Imam F, Nadeem A, Al-Harbi MM, Iqbal M, Ahmad SF. Carbon tetrachloride-induced hepatotoxicity in rat is reversed by treatment with riboflavin. Int Immunopharmacol. 2014;21(2):383–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen L, Feng L, Jiang WD, Jiang J, Wu P, Zhao J, et al. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet. Fish Shellfish Immunol. 2015;47(1):470–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Long L, He JZ, Chen Y, Xu XE, Liao LD, Xie YM, et al. Riboflavin depletion promotes tumorigenesis in HEK293T and NIH3T3 cells by sustaining cell proliferation and regulating cell cycle-related gene transcription. J Nutr. 2018;148(6):834–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Xin Z, Pu L, Gao W, Wang Y, Wei J, Shi T, et al. Riboflavin deficiency induces a significant change in proteomic profiles in HepG2 cells. Sci Rep. 2017;7:45861.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717–23.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: new players in old game. Int Rev Immunol. 2018;37(2):90–110.PubMedCrossRefGoogle Scholar
  44. 44.
    MacKay D, Hathcock J, Guarneri E. Niacin: chemical forms, bioavailability, and health effects. Nutr Rev. 2012;70(6):357–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Smesny S, Baur K, Rudolph N, Nenadic I, Sauer H. Alterations of niacin skin sensitivity in recurrent unipolar depressive disorder. J Affect Disord. 2010;124(3):335–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Karacaglar E, Atar I, Altin C, Yetis B, Cakmak A, Bayraktar N, Coner A, Ozin B, Muderrisoglu H. The Effects of Niacin on Inflammation in Patients with Non-ST Elevated Acute Coronary Syndrome. Acta Cardiol Sin. 2015;31(2):120.Google Scholar
  47. 47.
    Montserrat-de la Paz S, Rodriguez D, Cardelo MP, Naranjo MC, Bermudez B, Abia R, et al. The effects of exogenous fatty acids and niacin on human monocyte-macrophage plasticity. Mol Nutr Food Res. 2017;61(8):1600824.CrossRefGoogle Scholar
  48. 48.
    Graff EC, Fang H, Wanders D, Judd RL. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metab Clin Exp. 2016;65(2):102–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Offermanns S, Schwaninger M. Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation. Trends Mol Med. 2015;21(4):245–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Digby JE, Martinez F, Jefferson A, Ruparelia N, Chai J, Wamil M, et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler Thromb Vasc Biol. 2012;32(3):669–76.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ferreira RG, Matsui TC, Gomides LF, Godin AM, Menezes GB, de Matos Coelho M, et al. Niacin inhibits carrageenan-induced neutrophil migration in mice. Naunyn Schmiedeberg’s Arch Pharmacol. 2013;386(6):533–40.CrossRefGoogle Scholar
  52. 52.
    John CM, Ramasamy R, Al Naqeeb G, Al-Nuaimi AH, Adam A. Nicotinamide supplementation protects gestational diabetic rats by reducing oxidative stress and enhancing immune responses. Curr Med Chem. 2012;19(30):5181–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Wu BJ, Yan L, Charlton F, Witting P, Barter PJ, Rye K-A. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler Thromb Vasc Biol. 2010;30:968–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Feng L, Li SQ, Jiang WD, Liu Y, Jiang J, Wu P, et al. Deficiency of dietary niacin impaired intestinal mucosal immune function via regulating intestinal NF-kappaB, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016;49:177–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Salem HA, Wadie W. Effect of niacin on inflammation and angiogenesis in a murine model of ulcerative colitis. Sci Rep. 2017;7(1):7139.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yong LC, Petersen MR. High dietary niacin intake is associated with decreased chromosome translocation frequency in airline pilots. Br J Nutr. 2011;105(4):496–505.PubMedCrossRefGoogle Scholar
  57. 57.
    Salehi-Abargouei A, Esmaillzadeh A, Azadbakht L, Keshteli AH, Afshar H, Feizi A, et al. Do patterns of nutrient intake predict self-reported anxiety, depression and psychological distress in adults? SEPAHAN study. Clin Nutr. 2019;38:940–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Davison KM, Kaplan BJ. Nutrient intakes are correlated with overall psychiatric functioning in adults with mood disorders. Can J Psychiatry. 2012;57(2):85–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Hanai M, Esashi T. The interactive effect of dietary water-soluble vitamin levels on the depression of gonadal development in growing male rats kept under disturbed daily rhythm. J Nutr Sci Vitaminol. 2012;58(4):230–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Smulevich AB, Volel BA, Ternovaya ES, Nikitina YM. Pantogam activ (D-, L-hopantenic acid) in the treatment of cognitive and anxiety disorders in patients with arterial hypertension. Zh Nevrol Psikhiatr Im S S Korsakova. 2015;115(12):40–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Jung S, Kim MK, Choi BY. The long-term relationship between dietary pantothenic acid (vitamin B5) intake and C-reactive protein concentration in adults aged 40 years and older. Nutr Metab Cardiovasc Dis. 2017;27(9):806–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Gominak SC. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Med Hypotheses. 2016;94:103–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Li-Mei W, Jie T, Shan-He W, Dong-Mei M, Peng-Jiu Y. Anti-inflammatory and anti-oxidative effects of dexpanthenol on lipopolysaccharide induced acute lung injury in mice. Inflammation. 2016;39(5):1757–63.PubMedCrossRefGoogle Scholar
  64. 64.
    Soylu Karapinar O, Pinar N, Ozgur T, Ozcan O, Bayraktar HS, Kurt RK, et al. The protective role of dexpanthenol on the endometrial implants in an experimentally induced rat endometriosis model. Reprod Sci. 2017;24(2):285–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Karadag A, Ozdemir R, Kurt A, Parlakpinar H, Polat A, Vardi N, et al. Protective effects of dexpanthenol in an experimental model of necrotizing enterocolitis. J Pediatr Surg. 2015;50(7):1119–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Saliba KJ, Ferru I, Kirk K. Provitamin B5 (pantothenol) inhibits growth of the intraerythrocytic malaria parasite. Antimicrob Agents Chemother. 2005;49(2):632–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Engelking LR. Chapter 42 – Biotin and pyridoxine (B6). In: Engelking LR, editor. Textbook of veterinary physiological chemistry. 3rd ed. Boston: Academic Press; 2015. p. 271–5.CrossRefGoogle Scholar
  68. 68.
    Bender DA. Vitamin B6: physiology. In: Caballero B, editor. Encyclopedia of human nutrition. 3rd ed. Waltham: Academic Press; 2013. p. 340–50.CrossRefGoogle Scholar
  69. 69.
    Driskell JA. Vitamin B-6 requirements of humans. Nutr Res. 1994;14(2):293–324.CrossRefGoogle Scholar
  70. 70.
    Lee DG, Lee Y, Shin H, Kang K, Park JM, Kim BK, et al. Seizures related to vitamin B6 deficiency in adults. J Epilepsy Res. 2015;5(1):23–4.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rubi B. Pyridoxal 5′-phosphate (PLP) deficiency might contribute to the onset of type I diabetes. Med Hypotheses. 2012;78(1):179–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Qian B, Shen S, Zhang J, Jing P. Effects of vitamin B6 deficiency on the composition and functional potential of T cell populations. J Immunol Res. 2017;2017:2197975.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zheng X, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, et al. Dietary pyridoxine deficiency reduced growth performance and impaired intestinal immune function associated with TOR and NF-kappaB signalling of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017;70:682–700.PubMedCrossRefGoogle Scholar
  74. 74.
    Kayumov AR, Nureeva AA, Trizna EY, Gazizova GR, Bogachev MI, Shtyrlin NV, et al. New derivatives of pyridoxine exhibit high antibacterial activity against biofilm-embedded staphylococcus cells. Biomed Res Int. 2015;2015:890968.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kobayashi C, Kurohane K, Imai Y. High dose dietary pyridoxine induces T-helper type 1 polarization and decreases contact hypersensitivity response to fluorescein isothiocyanate in mice. Biol Pharm Bull. 2012;35(4):532–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Health and Sport, Victoria UniversityWerribeeAustralia

Personalised recommendations