Nutrigenomic Immunity

  • Amene Saghazadeh
  • Maryam Mahmoudi
  • Nima RezaeiEmail author


The present chapter would first provide evidences from single nucleotide polymorphism (SNP) studies which have established the interaction between polymorphisms within the genes related to immune and inflammatory responses (CRP, IL-1, TNFα, IL-6, LTA4, and SCD-1) and diet composition (vitamin D status, botanical formulation, fat intake, and fatty acid supplementation). SNP studies also show that the content of inflammatory markers (IL-6, CRP, and α2-microglobulin) would be influenced by the interaction between polymorphisms within metabolic pathways (GCKR, Fok-1, and FADS 1/2) and diet composition (fat intake, nutritional counseling, and vitamin D therapy). It is followed by a synthesis of results from human and animal studies that demonstrate differential expression of genes related to immune response and inflammatory processes in response to single (acute) or repeated daily (chronic) consumption of different dietary interventions (vegetables, fruits, and other plant-derived products, fish oils and meals, plant oils and meals, micronutrients, ethnic dietary patterns, calorie restriction, oral challenge tests, different protein sources, and nutritional stress). Altogether, such immune-related gene-diet interactions might affect anthropometric parameters, metabolic profile, and cardiovascular measurements and thereby alter individual susceptibility to metabolic (obesity, diabetes, and non-alcoholic fatty liver diseases), autoimmune (Crohn’s disease), and cardiovascular disorders (atherosclerosis).


Cytokine Diet Gene expression Immunity Inflammation Micronutrients Nutrigenomics Nutrition Single nucleotide polymorphism 


  1. 1.
    Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003;4(4):315.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Myburgh PH, Towers GW, Kruger IM, Nienaber-Rousseau C. CRP genotypes predict increased risk to co-present with low vitamin D and elevated CRP in a group of healthy Black South African Women. Int J Environ Res Public Health. 2018;15(1):E111.PubMedCrossRefGoogle Scholar
  3. 3.
    Oki E, Norde MM, Carioca AA, Ikeda RE, Souza JM, Castro IA, et al. Interaction of SNP in the CRP gene and plasma fatty acid profile in inflammatory pattern: a cross-sectional population-based study. Nutrition. 2016;32(1):88–94.PubMedCrossRefGoogle Scholar
  4. 4.
    Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl MC. Expression and sequence variants of inflammatory genes; effects on plasma inflammation biomarkers following a 6-week supplementation with fish oil. Int J Mol Sci. 2016;17(3):375.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kornman K, Rogus J, Roh-Schmidt H, Krempin D, Davies AJ, Grann K, et al. Interleukin-1 genotype-selective inhibition of inflammatory mediators by a botanical: a nutrigenetics proof of concept. Nutrition (Burbank, Los Angeles County, Calif). 2007;23(11–12):844–52.CrossRefGoogle Scholar
  6. 6.
    Guerreiro CS, Ferreira P, Tavares L, Santos PM, Neves M, Brito M, et al. Fatty acids, IL6, and TNFalpha polymorphisms: an example of nutrigenetics in Crohn’s disease. Am J Gastroenterol. 2009;104(9):2241–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Cuda C, Garcia-Bailo B, Karmali M, El-Sohemy A, Badawi A. A common polymorphism near the interleukin-6 gene modifies the association between dietary fat intake and insulin sensitivity. J Inflamm Res. 2012;5:1–6.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Rudkowska I, Julien P, Couture P, Lemieux S, Tchernof A, Barbier O, et al. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) -1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation. Mol Nutr Food Res. 2014;58(5):1079–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhao J, Roman MJ, Devereux RB, Yeh F, Zhang Y, Haack K, et al. Leukotriene haplotype x diet interaction on carotid artery hypertrophy and atherosclerosis in American Indians: the Strong Heart Family Study. Atherosclerosis. 2014;233(1):165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jamnik J, Garcia-Bailo B, Borchers CH, El-Sohemy A. Gluten intake is positively associated with plasma alpha2-macroglobulin in young adults. J Nutr. 2015;145(6):1256–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaliora AC, Kalafati IP, Gioxari A, Diolintzi A, Kokkinos A, Dedoussis GV. A modified response of NAFLD patients with non-significant fibrosis in nutritional counseling according to GCKR rs1260326. Eur J Nutr. 2018;57(6):2227–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Neyestani TR, Djazayery A, Shab-Bidar S, Eshraghian MR, Kalayi A, Shariatzadeh N, et al. Vitamin D receptor fok-I polymorphism modulates diabetic host response to vitamin D intake: need for a nutrigenetic approach. Diabetes Care. 2013;36(3):550–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Roke K, Ralston JC, Abdelmagid S, Nielsen DE, Badawi A, El-Sohemy A, et al. Variation in the FADS1/2 gene cluster alters plasma n-6 PUFA and is weakly associated with hsCRP levels in healthy young adults. Prostaglandins Leukot Essent Fat Acids. 2013;89(4):257–63.CrossRefGoogle Scholar
  14. 14.
    Barman M, Nilsson S, Torinsson Naluai A, Sandin A, Wold AE, Sandberg AS. Single nucleotide polymorphisms in the FADS gene cluster but not the ELOVL2 gene are associated with serum polyunsaturated fatty acid composition and development of allergy (in a Swedish Birth Cohort). Nutrients. 2015;7(12):10100–15.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Barber-Chamoux N, Milenkovic D, Verny MA, Habauzit V, Pereira B, Lambert C, Richard D, Boby C, Mazur A, Lusson JR, Dubray C. Substantial variability across individuals in the vascular and nutrigenomic response to an acute intake of curcumin: a randomized controlled trial. Mol Nutr Food Res. 2018;62(5):1700418.CrossRefGoogle Scholar
  16. 16.
    Hannon DB, Thompson JT, Khoo C, Juturu V, Vanden Heuvel JP. Effects of cranberry extracts on gene expression in THP-1 cells. Food Sci Nutr. 2017;5(1):148–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Milenkovic D, Deval C, Dubray C, Mazur A, Morand C. Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers: a randomized controlled cross-over study. PLoS One. 2011;6(11):e26669.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Baines KJ, Wood LG, Gibson PG. The nutrigenomics of asthma: molecular mechanisms of airway neutrophilia following dietary antioxidant withdrawal. OMICS. 2009;13(5):355–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Bakker GC, van Erk MJ, Pellis L, Wopereis S, Rubingh CM, Cnubben NH, et al. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr. 2010;91(4):1044–59.PubMedCrossRefGoogle Scholar
  20. 20.
    Pasman WJ, van Erk MJ, Klopping WA, Pellis L, Wopereis S, Bijlsma S, et al. Nutrigenomics approach elucidates health-promoting effects of high vegetable intake in lean and obese men. Genes Nutr. 2013;8(5):507–21.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Konstantinidou V, Khymenets O, Fito M, De La Torre R, Anglada R, Dopazo A, et al. Characterization of human gene expression changes after olive oil ingestion: an exploratory approach. Folia Biol. 2009;55(3):85–91.Google Scholar
  22. 22.
    D’Amore S, Vacca M, Cariello M, Graziano G, D’Orazio A, Salvia R, et al. Genes and miRNA expression signatures in peripheral blood mononuclear cells in healthy subjects and patients with metabolic syndrome after acute intake of extra virgin olive oil. Biochim Biophys Acta. 2016;1861(11):1671–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Konstantinidou V, Covas MI, Munoz-Aguayo D, Khymenets O, de la Torre R, Saez G, et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J. 2010;24(7):2546–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia-Bailo B, Roke K, Mutch DM, El-Sohemy A, Badawi A. Association between circulating ascorbic acid, alpha-tocopherol, 25-hydroxyvitamin D, and plasma cytokine concentrations in young adults: a cross-sectional study. Nutr Metabol. 2012;9(1):102.CrossRefGoogle Scholar
  25. 25.
    Meplan C, Johnson IT, Polley AC, Cockell S, Bradburn DM, Commane DM, et al. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J. 2016;30(8):2812–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Mazzatti DJ, Malavolta M, White AJ, Costarelli L, Giacconi R, Muti E, et al. Differential effects of in vitro zinc treatment on gene expression in peripheral blood mononuclear cells derived from young and elderly individuals. Rejuvenation Res. 2007;10(4):603–20.PubMedCrossRefGoogle Scholar
  27. 27.
    De Lorenzo A, Bernardini S, Gualtieri P, Cabibbo A, Perrone MA, Giambini I, et al. Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic risk. Acta Diabetol. 2017;54(2):141–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Garcia-Bailo B, Brenner DR, Nielsen D, Lee HJ, Domanski D, Kuzyk M, et al. Dietary patterns and ethnicity are associated with distinct plasma proteomic groups. Am J Clin Nutr. 2012;95(2):352–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Gahete MD, Luque RM, Yubero-Serrano EM, Cruz-Teno C, Ibanez-Costa A, Delgado-Lista J, et al. Dietary fat alters the expression of cortistatin and ghrelin systems in the PBMCs of elderly subjects: putative implications in the postprandial inflammatory response. Mol Nutr Food Res. 2014;58(9):1897–906.PubMedCrossRefGoogle Scholar
  30. 30.
    Brattbakk HR, Arbo I, Aagaard S, Lindseth I, de Soysa AK, Langaas M, et al. Balanced caloric macronutrient composition downregulates immunological gene expression in human blood cells-adipose tissue diverges. OMICS. 2013;17(1):41–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Crujeiras AB, Parra D, Milagro FI, Goyenechea E, Larrarte E, Margareto J, et al. Differential expression of oxidative stress and inflammation related genes in peripheral blood mononuclear cells in response to a low-calorie diet: a nutrigenomics study. OMICS. 2008;12(4):251–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Goyenechea E, Parra D, Crujeiras AB, Abete I, Martinez JA. A nutrigenomic inflammation-related PBMC-based approach to predict the weight-loss regain in obese subjects. Ann Nutr Metab. 2009;54(1):43–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Goyenechea E, Crujeiras AB, Abete I, Martinez JA. Expression of two inflammation-related genes (RIPK3 and RNF216) in mononuclear cells is associated with weight-loss regain in obese subjects. J Nutrigenet Nutrigenomics. 2009;2(2):78–84.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Grada CM, Morine MJ, Morris C, Ryan M, Dillon ET, Walsh M, et al. PBMCs reflect the immune component of the WAT transcriptome--implications as biomarkers of metabolic health in the postprandial state. Mol Nutr Food Res. 2014;58(4):808–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Fatima A, Connaughton RM, Weiser A, Murphy AM, O’Grada C, Ryan M et al. Weighted gene co-expression network analysis identifies gender specific modules and hub genes related to metabolism and inflammation in response to an acute lipid challenge. Mol Nutr Food Res. 2018;62(2).CrossRefGoogle Scholar
  36. 36.
    Dejeans N, Maier JA, Tauveron I, Milenkovic D, Mazur A. Modulation of gene expression in endothelial cells by hyperlipaemic postprandial serum from healthy volunteers. Genes Nutr. 2010;5(3):263–74.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Josse AR, Garcia-Bailo B, Fischer K, El-Sohemy A. Novel effects of hormonal contraceptive use on the plasma proteome. PLoS One. 2012;7(9):e45162.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sheoran N, Kumar R, Kumar A, Batra K, Sihag S, Maan S, et al. Nutrigenomic evaluation of garlic (Allium sativum) and holy basil (Ocimum sanctum) leaf powder supplementation on growth performance and immune characteristics in broilers. Vet World. 2017;10(1):121–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sgorlon S, Stefanon B, Sandri M, Colitti M. Nutrigenomic activity of plant derived compounds in health and disease: results of a dietary intervention study in dog. Res Vet Sci. 2016;109:142–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr Metab Cardiovasc Dis. 2012;22(1):72–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D. Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. Genes Nutr. 2010;5(4):343–53.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lillehoj HS, Kim DK, Bravo DM, Lee SH. Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc. 2011;5(Suppl 4):S34.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Alaux C, Dantec C, Parrinello H, Le Conte Y. Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genomics. 2011;12:496.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Moura-Assis A, Afonso MS, de Oliveira V, Morari J, Dos Santos GA, Koike M, et al. Flaxseed oil rich in omega-3 protects aorta against inflammation and endoplasmic reticulum stress partially mediated by GPR120 receptor in obese, diabetic and dyslipidemic mice models. J Nutr Biochem. 2017;53:9–19.PubMedCrossRefGoogle Scholar
  45. 45.
    Eslamloo K, Xue X, Hall JR, Smith NC, Caballero-Solares A, Parrish CC, et al. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics. 2017;18(1):706.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Booman M, Xu Q, Rise ML. Evaluation of the impact of camelina oil-containing diets on the expression of genes involved in the innate anti-viral immune response in Atlantic cod (Gadus morhua). Fish Shellfish Immunol. 2014;41(1):52–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Abernathy J, Brezas A, Snekvik KR, Hardy RW, Overturf K. Integrative functional analyses using rainbow trout selected for tolerance to plant diets reveal nutrigenomic signatures for soy utilization without the concurrence of enteritis. PLoS One. 2017;12(7):e0180972.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kortner TM, Skugor S, Penn MH, Mydland LT, Djordjevic B, Hillestad M, et al. Dietary soyasaponin supplementation to pea protein concentrate reveals nutrigenomic interactions underlying enteropathy in Atlantic salmon (Salmo salar). BMC Vet Res. 2012;8:101.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    De Santis C, Bartie KL, Olsen RE, Taggart JB, Tocher DR. Nutrigenomic profiling of transcriptional processes affected in liver and distal intestine in response to a soybean meal-induced nutritional stress in Atlantic salmon (Salmo salar). Comp Biochem Physiol Part D Genomics Proteomics. 2015;15:1–11.PubMedCrossRefGoogle Scholar
  50. 50.
    De Santis C, Crampton VO, Bicskei B, Tocher DR. Replacement of dietary soy- with air classified faba bean protein concentrate alters the hepatic transcriptome in Atlantic salmon (Salmo salar) parr. Comp Biochem Physiol Part D Genomics Proteomics. 2015;16:48–58.PubMedCrossRefGoogle Scholar
  51. 51.
    Song S, Hooiveld GJ, Zhang W, Li M, Zhao F, Zhu J, et al. Comparative proteomics provides insights into metabolic responses in rat liver to isolated soy and meat proteins. J Proteome Res. 2016;15(4):1135–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Heo HS, Kim E, Jeon SM, Kwon EY, Shin SK, Paik H, et al. A nutrigenomic framework to identify time-resolving responses of hepatic genes in diet-induced obese mice. Mol Cell. 2013;36(1):25–38.CrossRefGoogle Scholar
  53. 53.
    Lizier M, Bomba L, Minuti A, Chegdani F, Capraro J, Tondelli B, et al. The nutrigenomic investigation of C57BL/6 N mice fed a short-term high-fat diet highlights early changes in clock genes expression. Genes Nutr. 2013;8(5):465–74.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Merched AJ, Serhan CN, Chan L. Nutrigenetic disruption of inflammation-resolution homeostasis and atherogenesis. J Nutrigenet Nutrigenomics. 2011;4(1):12–24.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Reynes B, Garcia-Ruiz E, Palou A, Oliver P. The intake of high-fat diets induces an obesogenic-like gene expression profile in peripheral blood mononuclear cells, which is reverted by dieting. Br J Nutr. 2016;115(11):1887–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Elgendy R, Giantin M, Castellani F, Grotta L, Palazzo F, Dacasto M, et al. Transcriptomic signature of high dietary organic selenium supplementation in sheep: a nutrigenomic insight using a custom microarray platform and gene set enrichment analysis. J Anim Sci. 2016;94(8):3169–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Tallino S, Duffy M, Ralle M, Cortes MP, Latorre M, Burkhead JL. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem. 2015;26(10):996–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Spitz J, Becquet V, Rosen DA, Trites AW. A nutrigenomic approach to detect nutritional stress from gene expression in blood samples drawn from Steller sea lions. Comp Biochem Physiol A Mol Integr Physiol. 2015;187:214–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Agrawal A, Khan MJ, Graugnard DE, Vailati-Riboni M, Rodriguez-Zas SL, Osorio JS, et al. Prepartal energy intake alters blood polymorphonuclear leukocyte transcriptome during the peripartal period in Holstein Cows. Bioinform Biol Insights. 2017;11:1177932217704667.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Roy N, Barnett M, Knoch B, Dommels Y, McNabb W. Nutrigenomics applied to an animal model of Inflammatory Bowel Diseases: transcriptomic analysis of the effects of eicosapentaenoic acid- and arachidonic acid-enriched diets. Mutat Res. 2007;622(1–2):103–16.PubMedCrossRefGoogle Scholar
  61. 61.
    Sevane N, Bialade F, Velasco S, Rebole A, Rodriguez ML, Ortiz LT, et al. Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. PLoS One. 2014;9(6):e98942.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Meng Q, Ying Z, Noble E, Zhao Y, Agrawal R, Mikhail A, et al. Systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders. EBioMedicine. 2016;7:157–66.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amene Saghazadeh
    • 1
    • 2
    • 3
  • Maryam Mahmoudi
    • 4
    • 5
  • Nima Rezaei
    • 1
    • 6
    • 7
    Email author
  1. 1.Research Center for Immunodeficiencies, Children’s Medical CenterTehran University of Medical SciencesTehranIran
  2. 2.MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN)TehranIran
  4. 4.Department of Cellular and Molecular Nutrition, School of Nutrition and DieteticsTehran University of Medical SciencesTehranIran
  5. 5.Dietitians and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN)TehranIran
  6. 6.Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
  7. 7.Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN)TehranIran

Personalised recommendations