Advertisement

Nutrition for Chronic Critical Illness and Persistent Inflammatory, Immunosuppressed, Catabolic Syndrome

  • Martin D. RosenthalEmail author
  • Amir Y. Kamel
  • Michelle P. Brown
  • Angela C. Young
  • Jayshil J. Patel
  • Frederick A. Moore
Chapter

Abstract

The hallmark of chronic critical illness (CCI) and persistent inflammatory, immunosuppressed, catabolic syndrome (PICS) is the continued breakdown of lean muscle leading to profound weakness, decreased capacity for rehabilitation, immunosuppression, and a propensity to develop recurrent nosocomial infections. Better critical care support systems and advances in technology have led to increased patient survival, but unfortunately, CCI and PICS have emerged as a frequent phenotype among critical care survivors. With an aging population and continued advancements in critical care support systems, the prevalence of CCI and PICS is anticipated to increase. Unfortunately, therapies to mitigate or reverse CCI and PICS are limited. A lack of randomized controlled trials has limited strong recommendations for nutrition support in the CCI patients. Nutritional therapies for PICS may be of biologic value, and this chapter will describe recent advances and draw inferences from the literature to support nutritional interventions in PICS.

Keywords

Chronic critical illness High protein Malnutrition Persistent inflammatory, immunosuppressed, catabolic syndrome PICS 

Notes

Acknowledgments

The investigators acknowledge the contribution of the Center for Sepsis and Critical Illness Award # P50 GM-111152 from the National Institute of General Medical Sciences.

References

  1. 1.
    Rosenthal M, Gabrielli A, Moore F. The evolution of nutritional support in long term ICU patients: from multisystem organ failure to persistent inflammation immunosuppression catabolism syndrome. Minerva Anestesiol. 2016;82(1):84–96.PubMedGoogle Scholar
  2. 2.
    Girard K, Raffin TA. The chronically critically ill: to save or let die? Respir Care. 1985;30(5):339–47.PubMedGoogle Scholar
  3. 3.
    Carson SS, Bach PB. The epidemiology and costs of chronic critical illness. Crit Care Clin. 2002;18(3):461–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Daly BJ, Douglas SL, Gordon NH, Kelley CG, O’Toole E, Montenegro H, et al. Composite outcomes of chronically critically ill patients 4 months after hospital discharge. Am J Crit Care. 2009;18(5):456–64; quiz 65.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Daly BJ, Douglas SL, Kelley CG, O’Toole E, Montenegro H. Trial of a disease management program to reduce hospital readmissions of the chronically critically ill. Chest. 2005;128(2):507–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Seneff MG, Zimmerman JE, Knaus WA, Wagner DP, Draper EA. Predicting the duration of mechanical ventilation. The importance of disease and patient characteristics. Chest. 1996;110(2):469–79.PubMedCrossRefGoogle Scholar
  7. 7.
    Nierman DM. A structure of care for the chronically critically ill. Crit Care Clin. 2002;18(3):477–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Vanzant EL, Lopez CM, Ozrazgat-Baslanti T, Ungaro R, Davis R, Cuenca AG, et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg. 2014;76(1):21–9; discussion 9–30.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kahn JM, Le T, Angus DC, Cox CE, Hough CL, White DB, et al. The epidemiology of chronic critical illness in the United States∗. Crit Care Med. 2015;43(2):282–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long-term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60(6):1070–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Iwashyna TJ, Hodgson CL, Pilcher D, Bailey M, van Lint A, Chavan S, et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study. Lancet Respir Med. 2016;4(7):566–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med. 2017;45(2):253–62.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM, Moore FA, Brakenridge SC, Brumback BA, Moldawer LL, et al. Human Myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg. 2017;265(4):827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mira JC, Cuschieri J, Ozrazgat-Baslanti T, Wang Z, Ghita GL, Loftus TJ, Stortz JA, Raymond SL, Lanz JD, Hennessy LV, et al. The epidemiology of chronic critical illness after severe traumatic injury at two level-one trauma centers. Crit Care Med. 2017;45(12):1989–96.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Stortz JA, Mira JC, Raymond SL, Loftus TJ, Ozrazgat-Baslanti T, Wang Z, Ghita GL, Leeuwenburgh C, Segal MS, Bihorac A, et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J Trauma Acute Care Surg. 2018;84(2):342–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rosenthal MD, Rosenthal CM, Moore FA, Martindale RG. Persistent, immunosuppression, inflammation, catabolism syndrome and diaphragmatic dysfunction. Curr Pulmonol Rep. 2017;6(1):54–7.CrossRefGoogle Scholar
  18. 18.
    Rosenthal MD, Vanzant EL, Martindale RG, Moore FA. Evolving paradigms in the nutritional support of critically ill surgical patients. Curr Probl Surg. 2015;52(4):147–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Puntillo KA. Pain experiences of intensive care unit patients. Heart Lung. 1990;19(5 Pt 1):526–33.PubMedGoogle Scholar
  20. 20.
    Puntillo KA, White C, Morris AB, Perdue ST, Stanik-Hutt J, Thompson CL, et al. Patients’ perceptions and responses to procedural pain: results from thunder project II. American journal of critical care: an official publication. Am J Crit Care. 2001;10(4):238–51.PubMedGoogle Scholar
  21. 21.
    Desbiens NA, Mueller-Rizner N, Connors AF Jr, Wenger NS, Lynn J. The symptom burden of seriously ill hospitalized patients. SUPPORT investigators. Study to understand prognoses and preferences for outcome and risks of treatment. J Pain Symptom Manag. 1999;17(4):248–55.CrossRefGoogle Scholar
  22. 22.
    Desbiens NA, Wu AW, Broste SK, Wenger NS, Connors AF Jr, Lynn J, et al. Pain and satisfaction with pain control in seriously ill hospitalized adults: findings from the SUPPORT research investigations. For the SUPPORT investigators. Study to understand prognoses and preferences for outcomes and risks of Treatmentm. Crit Care Med. 1996;24(12):1953–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Nelson JE, Meier DE, Litke A, Natale DA, Siegel RE, Morrison RS. The symptom burden of chronic critical illness. Crit Care Med. 2004;32(7):1527–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Nelson JE, Meier DE, Oei EJ, Nierman DM, Senzel RS, Manfredi PL, et al. Self-reported symptom experience of critically ill cancer patients receiving intensive care. Crit Care Med. 2001;29(2):277–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson JE, Mercado AF, Camhi SL, Tandon N, Wallenstein S, August GI, et al. Communication about chronic critical illness. Arch Intern Med. 2007;167(22):2509–15.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Carson SS, Cox CE, Holmes GM, Howard A, Carey TS. The changing epidemiology of mechanical ventilation: a population-based study. J Intensive Care Med. 2006;21(3):173–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Carson SS, Garrett J, Hanson LC, Lanier J, Govert J, Brake MC, et al. A prognostic model for one-year mortality in patients requiring prolonged mechanical ventilation. Crit Care Med. 2008;36(7):2061–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Van den Berghe G. Neuroendocrine pathobiology of chronic critical illness. Crit Care Clin. 2002;18(3):509–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Douglas SL, Daly BJ, Gordon N, Brennan PF. Survival and quality of life: short-term versus long-term ventilator patients. Crit Care Med. 2002;30(12):2655–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Carson SS, Bach PB, Brzozowski L, Leff A. Outcomes after long-term acute care. An analysis of 133 mechanically ventilated patients. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1568–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Hart DW, Herndon DN, Klein G, Lee SB, Celis M, Mohan S, et al. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. Ann Surg. 2001;233(6):827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jeschke MG, Kraft R, Emdad F, Kulp GA, Williams FN, Herndon DN. Glucose control in severely thermally injured pediatric patients: what glucose range should be the target? Ann Surg. 2010;252(3):521–7; discussion 7–8.PubMedGoogle Scholar
  33. 33.
    Jeschke MG, Kulp GA, Kraft R, Finnerty CC, Mlcak R, Lee JO, et al. Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med. 2010;182(3):351–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Porro LJ, Herndon DN, Rodriguez NA, Jennings K, Klein GL, Mlcak RP, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg. 2012;214(4):489–502. discussion -4PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sheffield-Moore M, Urban RJ, Wolf SE, Jiang J, Catlin DH, Herndon DN, et al. Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab. 1999;84(8):2705–11.PubMedGoogle Scholar
  36. 36.
    Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17):1223–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Suman OE, Spies RJ, Celis MM, Mlcak RP, Herndon DN. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol. 2001;91(3):1168–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Jeschke MG, Chinkes DL, Finnerty CC, Kulp G, Suman OE, Norbury WB, et al. Pathophysiologic response to severe burn injury. Ann Surg. 2008;248(3):387–401.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR. Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg. 1980;192(4):570–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Weijs PJ, Cynober L, DeLegge M, Kreymann G, Wernerman J, Wolfe RR. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients. Crit Care. 2014;18(6):591.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cynober L, de Bandt JP, Moinard C. Leucine and citrulline: two major regulators of protein turnover. World Rev Nutr Diet. 2013;105:97–105.PubMedCrossRefGoogle Scholar
  42. 42.
    Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291(2):E381–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Laufenberg LJ, Pruznak AM, Navaratnarajah M, Lang CH. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids. 2014;46(12):2787–98.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bansal V, Ochoa JB. Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care. 2003;6(2):223–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu X, Pribis JP, Rodriguez PC, Morris SM Jr, Vodovotz Y, Billiar TR, et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury. Ann Surg. 2014;259(1):171–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Luiking YC, Poeze M, Dejong CH, Ramsay G, Deutz NE. Sepsis: an arginine deficiency state? Crit Care Med. 2004;32(10):2135–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Luiking YC, Engelen MP, Deutz NE. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care. 2010;13(1):97–104.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Popovic PJ, Zeh HJ 3rd, Ochoa JB. Arginine and immunity. J Nutr. 2007;137(6 Suppl 2):1681S–6S.PubMedCrossRefGoogle Scholar
  49. 49.
    Serhan CN, Krishnamoorthy S, Recchiuti A, Chiang N. Novel anti-inflammatory--pro-resolving mediators and their receptors. Curr Top Med Chem. 2011;11(6):629–47.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Heyland DK, MacDonald S, Keefe L, Drover JW. Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA. 1998;280(23):2013–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29(12):2264–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Preiser JC, Ichai C, Orban JC, Groeneveld AB. Metabolic response to the stress of critical illness. Br J Anaesth. 2014;113(6):945–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Plank LD, Hill GL. Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg. 2000;24(6):630–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395–405.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 1998;228(2):146–58.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Paddon-Jones D. Interplay of stress and physical inactivity on muscle loss: nutritional countermeasures. J Nutr. 2006;136(8):2123–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Paddon-Jones D, Sheffield-Moore M, Urban RJ, Sanford AP, Aarsland A, Wolfe RR, et al. Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab. 2004;89(9):4351–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008;87(5):1562S–6S.PubMedCrossRefGoogle Scholar
  61. 61.
    Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NE, et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010;11(6):391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Deutz NE, Wolfe RR. Is there a maximal anabolic response to protein intake with a meal? Clin Nutr. 2013;32(2):309–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Compher C, Chittams J, Sammarco T, Nicolo M, Heyland DK. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a multicenter, multinational observational study. Crit Care Med. 2017;45(2):156–63.PubMedCrossRefGoogle Scholar
  64. 64.
    Nicolo M, Heyland DK, Chittams J, Sammarco T, Compher C. Clinical outcomes related to protein delivery in a critically ill population: a multicenter, multinational observation study. JPEN J Parenter Enteral Nutr. 2016;40(1):45–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Weijs PJ, Looijaard WG, Beishuizen A, Girbes AR, Oudemans-van Straaten HM. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014;18(6):701.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, Espersen K, Hartvig Jensen T, Wiis J, et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012;31(4):462–8.PubMedCrossRefGoogle Scholar
  67. 67.
    McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (a.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33(3):277–316.PubMedCrossRefGoogle Scholar
  68. 68.
    Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363(9424):1895–902.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin D. Rosenthal
    • 1
    Email author
  • Amir Y. Kamel
    • 2
  • Michelle P. Brown
    • 2
  • Angela C. Young
    • 2
  • Jayshil J. Patel
    • 3
  • Frederick A. Moore
    • 1
  1. 1.Department of Surgery, Division of Acute Care Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of MedicineGainesvilleUSA
  2. 2.Department of Pharmacy, UF Health, University of Florida College of PharmacyGainesvilleUSA
  3. 3.Department of Medicine, Division of Pulmonary & Critical Care Medicine, Medical College of WisconsinMilwaukeeUSA

Personalised recommendations