Advertisement

Nutrition and Cancer

  • Laleh Sharifi
Chapter

Abstract

The aim of this chapter is to provide a general overview of the effects of nutrition on cancer-promoting mechanisms and its contribution to cancer therapeutic regimens, as well as its supportive role in cancer survivors. The association of nutrition and cancer is very intricate as some foods have the potential to induce mutagenic changes but others show anticancer properties. Cancer-protective foods such as whole grains, fruits, non-starchy vegetables, fish, and dairy products contain nutrients and non-nutrient bioactive components that are involved in the mechanisms for enhancing immunologic function, inducing apoptosis, enhancing antiproliferative function, donating electron to free radicals, activating carcinogen-metabolizer enzymes, as well as synthesizing retinoic acid. On the other hand, there are types of foods with cancer-developing effects like red meat, processed and fast foods, alcohol, as well as sugar-sweetened beverages. They exert carcinogenic effects mostly by causing obesity and overweight, unbalanced hormones, inflammation, oxidative stress, and lipid peroxidation. Cancer-preventing recommendations include keeping a healthy weight, having a physically active life, and following a diet rich in foods of plant sources and limited in red meat, fast foods, alcohol, and sugar-sweetened drinks. In spite of developments in the area of nutrition, immunity, and cancer, comprehensive studies are needed to detect the association between nutrients and immunological pathways contributed to cancer development especially according to ethnic, age, sex, and specific cancer exposures such as smoking, UV light radiation, and infections.

Keywords

Cancer Whole grains Non-starchy vegetables Fruits Fish Dairy products Red meat Fast food Alcohol Sugar-sweetened beverages 

References

  1. 1.
    “Cancer Fact sheet N 297”. World Health Organization. February 2018.Google Scholar
  2. 2.
    “Defining Cancer”. National Cancer Institute. 2018; Available from https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
  3. 3.
    O’Dell M, Stubblefield M. Cancer rehabilitation: principles and practice: Springer Publishing Company; 2009.Google Scholar
  4. 4.
    Ervik M, Lam F, Ferley J, et al. Cancer Today. 2016. International Agency for Research on Cancer; Available from http://gco.iarc.fr/today.
  5. 5.
    Bloom DE, Cafiero ET, Jané-Llopis E, Abrahams-Gessel S, Bloom LR, Fathima S, Feigl AB, Gaziano T, Mowafi M, Pandya A, Prettner K, Rosenberg L, Seligman B, Stein A, Weinstein C. The global economic burden of non-communicable diseases. Geneva: World Economic Forum; 2011.Google Scholar
  6. 6.
    Valdes-Ramos R, Benitez-Arciniega AD. Nutrition and immunity in cancer. Br J Nutr. 2007;98(Suppl 1):S127–32.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T, Moore MA, et al. Meat, fish and fat intake in relation to subsite-specific risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci. 2007;98(4):590–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Theodoratou E, McNeill G, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, et al. Dietary fatty acids and colorectal cancer: a case-control study. Am J Epidemiol. 2007;166(2):181–95.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. Philadelphia: Saunders/Elsevier; 2010. Print.Google Scholar
  10. 10.
    Aguilera A, Gomez-Gonzalez B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008;9(3):204–17.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Slavin JL. Mechanisms for the impact of whole grain foods on cancer risk. J Am Coll Nutr. 2000;19(3 Suppl):300S–7S.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Liu L, Zhao M, Liu X, Zhong K, Tong L, Zhou X, et al. Effect of steam explosion-assisted extraction on phenolic acid profiles and antioxidant properties of wheat bran. J Sci Food Agric. 2016;96(10):3484–91.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Knudsen MD, Kyro C, Olsen A, Dragsted LO, Skeie G, Lund E, et al. Self-reported whole-grain intake and plasma alkylresorcinol concentrations in combination in relation to the incidence of colorectal cancer. Am J Epidemiol. 2014;179(10):1188–96.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bingham SA. Mechanisms and experimental and epidemiological evidence relating dietary fibre (non-starch polysaccharides) and starch to protection against large bowel cancer. Proc Nutr Soc. 1990;49(2):153–71.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, Obesity and Insulin Resistance. Nutrients. 2017;9(12)PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pi-Sunyer X. Do glycemic index, glycemic load, and fiber play a role in insulin sensitivity, disposition index, and type 2 diabetes? Diabetes Care. 2005;28(12):2978–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Nomura AM, Hankin JH, Henderson BE, Wilkens LR, Murphy SP, Pike MC, et al. Dietary fiber and colorectal cancer risk: the multiethnic cohort study. Cancer Causes Control. 2007;18(7):753–64.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Liu Y, Chang CC, Marsh GM, Wu F. Population attributable risk of aflatoxin-related liver cancer: systematic review and meta-analysis. Eur J Cancer. 2012;48(14):2125–36.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Magnussen A, Parsi MA. Aflatoxins, hepatocellular carcinoma and public health. World J Gastroenterol. 2013;19(10):1508–12.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nugraha A, Khotimah K, Rietjens I. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food Chem Toxicol. 2018;113:134–44.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Erkekoglu P, Oral D, Chao MW, Kocer-Gumusel B. Hepatocellular carcinoma and possible chemical and biological causes: a review. J Environ Pathol Toxicol Oncol. 2017;36(2):171–90.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Steinmetz KA, Potter JD. Vegetables, fruit, and cancer. II Mechanisms. Cancer Causes Control. 1991;2(6):427–42.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bradbury KE, Appleby PN, Key TJ. Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2014;100(Suppl 1):394S–8S.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kim K-H, Tsao R, Yang R, Cui SW. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006;95(3):466–73.CrossRefGoogle Scholar
  26. 26.
    Abar L, Vieira AR, Aune D, Stevens C, Vingeliene S, Navarro Rosenblatt DA, et al. Blood concentrations of carotenoids and retinol and lung cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Cancer Med. 2016;5(8):2069–83.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Krinsky NI. Anticarcinogenic activities of carotenoids in animals and cellular systems. EXS. 1992;62:227–34.PubMedPubMedCentralGoogle Scholar
  28. 28.
    De Flora S, Bagnasco M, Vainio H. Modulation of genotoxic and related effects by carotenoids and vitamin a in experimental models: mechanistic issues. Mutagenesis. 1999;14(2):153–72.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Napoli JL, Race KR. Biogenesis of retinoic acid from beta-carotene. Differences between the metabolism of beta-carotene and retinal. J Biol Chem. 1988;263(33):17372–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang XD, Russell RM, Liu C, Stickel F, Smith DE, Krinsky NI. Beta-oxidation in rabbit liver in vitro and in the perfused ferret liver contributes to retinoic acid biosynthesis from beta-apocarotenoic acids. J Biol Chem. 1996;271(43):26490–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Edes TE, Thornton W Jr, Shah J. Beta-carotene and aryl hydrocarbon hydroxylase in the rat: an effect of beta-carotene independent of vitamin A activity. J Nutr. 1989;119(5):796–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Santos MS, Meydani SN, Leka L, Wu D, Fotouhi N, Meydani M, et al. Natural killer cell activity in elderly men is enhanced by beta-carotene supplementation. Am J Clin Nutr. 1996;64(5):772–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bendich A. Carotenoids and the immune response. J Nutr. 1989;119(1):112–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Burton GW, Ingold KU. Beta-carotene: an unusual type of lipid antioxidant. Science. 1984;224(4649):569–73.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Krinsky NI. Actions of carotenoids in biological systems. Annu Rev Nutr. 1993;13:561–87.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bauman JE, Zang Y, Sen M, Li C, Wang L, Egner PA, et al. Prevention of carcinogen-induced oral cancer by sulforaphane. Cancer Prev Res (Phila). 2016;9(7):547–57.CrossRefGoogle Scholar
  37. 37.
    Jin J, Ouyang Z, Wang Z. Association of fruit and vegetables with the risk of nasopharyngeal cancer: evidence from a meta-analysis. Sci Rep. 2014;4:5229.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Li B, Jiang G, Zhang G, Xue Q, Zhang H, Wang C, et al. Intake of vegetables and fruit and risk of esophageal adenocarcinoma: a meta-analysis of observational studies. Eur J Nutr. 2014;53(7):1511–21.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Vieira AR, Vingeliene S, Chan DS, Aune D, Abar L, Navarro Rosenblatt D, et al. Fruits, vegetables, and bladder cancer risk: a systematic review and meta-analysis. Cancer Med. 2015;4(1):136–46.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Aoyama N, Kawado M, Yamada H, Hashimoto S, Suzuki K, Wakai K, et al. Low intake of vegetables and fruits and risk of colorectal cancer: the Japan Collaborative Cohort Study. J Epidemiol. 2014;24(5):353–60.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Meng H, Hu W, Chen Z, Shen Y. Fruit and vegetable intake and prostate cancer risk: a meta-analysis. Asia Pac J Clin Oncol. 2014;10(2):133–40.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gonzalez CA, Cancer EWGoG. Vegetable, fruit and cereal consumption and gastric cancer risk. IARC Sci Publ. 2002;156:79–83.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Smith-Warner SA, Spiegelman D, Yaun SS, Albanes D, Beeson WL, van den Brandt PA, et al. Fruits, vegetables and lung cancer: a pooled analysis of cohort studies. Int J Cancer. 2003;107(6):1001–11.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yu N, Su X, Wang Z, Dai B, Kang J. Association of dietary Vitamin A and beta-carotene intake with the risk of lung cancer: a meta-analysis of 19 publications. Nutrients. 2015;7(11):9309–24.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhang L, Wang S, Che X, Li X. Vitamin D and lung cancer risk: a comprehensive review and meta-analysis. Cell Physiol Biochem. 2015;36(1):299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chlebowski RT, Schwartz AG, Wakelee H, Anderson GL, Stefanick ML, Manson JE, et al. Oestrogen plus progestin and lung cancer in postmenopausal women (Women’s Health Initiative trial): a post-hoc analysis of a randomised controlled trial. Lancet. 2009;374(9697):1243–51.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fasco MJ, Hurteau GJ, Spivack SD. Gender-dependent expression of alpha and beta estrogen receptors in human nontumor and tumor lung tissue. Mol Cell Endocrinol. 2002;188(1–2):125–40.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mollerup S, Jorgensen K, Berge G, Haugen A. Expression of estrogen receptors alpha and beta in human lung tissue and cell lines. Lung Cancer. 2002;37(2):153–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Jung S, Spiegelman D, Baglietto L, Bernstein L, Boggs DA, van den Brandt PA, et al. Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J Natl Cancer Inst. 2013;105(3):219–36.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44–55.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Li F, Duan F, Zhao X, Song C, Cui S, Dai L. Red meat and processed meat consumption and nasopharyngeal carcinoma risk: a dose-response meta-analysis of observational studies. Nutr Cancer. 2016;68(6):1034–43.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Yang WS, Wong MY, Vogtmann E, Tang RQ, Xie L, Yang YS, et al. Meat consumption and risk of lung cancer: evidence from observational studies. Ann Oncol. 2012;23(12):3163–70.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Larsson SC, Wolk A. Red and processed meat consumption and risk of pancreatic cancer: meta-analysis of prospective studies. Br J Cancer. 2012;106(3):603–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015;145(1):5–15.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hecht SS. Lung carcinogenesis by tobacco smoke. Int J Cancer. 2012;131(12):2724–32.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ahmad S, Khan H, Siddiqui Z, Khan MY, Rehman S, Shahab U, et al. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol. 2018;49:44–55.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Padmanabhan H, Brookes MJ, Iqbal T. Iron and colorectal cancer: evidence from in vitro and animal studies. Nutr Rev. 2015;73(5):308–17.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila). 2011;4(2):177–84.CrossRefGoogle Scholar
  59. 59.
    Mirvish SS. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995;93(1):17–48.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tricker AR, Preussmann R. Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res. 1991;259(3–4):277–89.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vinceti M, Dennert G, Crespi CM, Zwahlen M, Brinkman M, Zeegers MP, et al. Selenium for preventing cancer. Cochrane Database Syst Rev. 2014;30(3):CD005195.Google Scholar
  62. 62.
    Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–57.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Imtiaz S, Siddiqui N. Vitamin-D status at breast cancer diagnosis: correlation with social and environmental factors and dietary intake. J Ayub Med Coll Abbottabad. 2014;26(2):186–90.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Yang B, Ren XL, Fu YQ, Gao JL, Li D. Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer. 2014;14:105.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fabian CJ, Kimler BF, Hursting SD. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res. 2015;17:62.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cao W, Ma Z, Rasenick MM, Yeh S, Yu J. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth. PLoS One. 2012;7(12):e52838.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Jump DB, Depner CM, Tripathy S, Lytle KA. Potential for dietary omega-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer. Adv Nutr. 2015;6(6):694–702.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rohrmann S, Linseisen J, Becker N, Norat T, Sinha R, Skeie G, et al. Cooking of meat and fish in Europe--results from the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Clin Nutr. 2002;56(12):1216–30.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kobayashi M, Otani T, Iwasaki M, Natsukawa S, Shaura K, Koizumi Y, et al. Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of stomach cancer: a hospital-based case-control study in Japan. Gastric Cancer. 2009;12(4):198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zang J, Shen M, Du S, Chen T, Zou S. The association between dairy intake and breast cancer in Western and Asian populations: a systematic review and meta-analysis. J Breast Cancer. 2015;18(4):313–22.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Murphy N, Norat T, Ferrari P, Jenab M, Bueno-de-Mesquita B, Skeie G, et al. Consumption of dairy products and colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). PLoS One. 2013;8(9):e72715.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Russo J, Russo IH. The pathway of neoplastic transformation of human breast epithelial cells. Radiat Res. 2001;155(1 Pt 2):151–4.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Stewart TA, Yapa KT, Monteith GR. Altered calcium signaling in cancer cells. Biochim Biophys Acta. 2015;1848(10 Pt B):2502–11.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bayram R, Yavuz MZ, Benek BS, Aydogar Bozkurt A, Ucbek A, Ozunal ZG, et al. Effect of breast milk calcium and fluidity on breast cancer cells: an in vitro cell culture study. Breastfeed Med. 2016;11:474–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Schwarz EC, Qu B, Hoth M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochim Biophys Acta. 2013;1833(7):1603–11.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Norat T, Riboli E. Dairy products and colorectal cancer. A review of possible mechanisms and epidemiological evidence. Eur J Clin Nutr. 2003;57(1):1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Shin MH, Holmes MD, Hankinson SE, Wu K, Colditz GA, Willett WC. Intake of dairy products, calcium, and vitamin d and risk of breast cancer. J Natl Cancer Inst. 2002;94(17):1301–11.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Arab A, Akbarian SA, Ghiyasvand R, Miraghajani M. The effects of conjugated linoleic acids on breast cancer: a systematic review. Adv Biomed Res. 2016;5:115.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Giovannucci E. Dietary influences of 1,25(OH)2 vitamin D in relation to prostate cancer: a hypothesis. Cancer Causes Control. 1998;9(6):567–82.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Giovannucci E. Insulin-like growth factor-I and binding protein-3 and risk of cancer. Horm Res. 1999;51(Suppl 3):34–41.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter HB, et al. Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Ann Intern Med. 2008;149(7):461–71, W83-8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Reidy J, McHugh E, Stassen LF. A review of the relationship between alcohol and oral cancer. Surgeon. 2011;9(5):278–83.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ahmad Kiadaliri A, Jarl J, Gavriilidis G, Gerdtham UG. Alcohol drinking cessation and the risk of laryngeal and pharyngeal cancers: a systematic review and meta-analysis. PLoS One. 2013;8(3):e58158.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Brooks PJ, Enoch MA, Goldman D, Li TK, Yokoyama A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 2009;6(3):e50.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zakhari S, Hoek JB. Alcohol and breast cancer: reconciling epidemiological and molecular data. Adv Exp Med Biol. 2015;815:7–39.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Jarl J, Heckley G, Brummer J, Gerdtham UG. Time characteristics of the effect of alcohol cessation on the risk of stomach cancer--a meta-analysis. BMC Public Health. 2013;13:600.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Freudenheim JL, Ritz J, Smith-Warner SA, Albanes D, Bandera EV, van den Brandt PA, et al. Alcohol consumption and risk of lung cancer: a pooled analysis of cohort studies. Am J Clin Nutr. 2005;82(3):657–67.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Welsch T, Kleeff J, Seitz HK, Buchler P, Friess H, Buchler MW. Update on pancreatic cancer and alcohol-associated risk. J Gastroenterol Hepatol. 2006;21(Suppl 3):S69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Grewal P, Viswanathen VA. Liver cancer and alcohol. Clin Liver Dis. 2012;16(4):839–50.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Saladi RN, Nektalova T, Fox JL. Induction of skin carcinogenicity by alcohol and ultraviolet light. Clin Exp Dermatol. 2010;35(1):7–11.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Wozniak MB, Brennan P, Brenner DR, Overvad K, Olsen A, Tjonneland A, et al. Alcohol consumption and the risk of renal cancers in the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer. 2015;137(8):1953–66.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Cai S, Li Y, Ding Y, Chen K, Jin M. Alcohol drinking and the risk of colorectal cancer death: a meta-analysis. Eur J Cancer Prev. 2014;23(6):532–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc. 2006;65(3):278–90.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7(8):599–612.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Asp Med. 2008;29(1–2):9–16.CrossRefGoogle Scholar
  96. 96.
    Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7(2):149–56.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Baumgardner JN, Shankar K, Korourian S, Badger TM, Ronis MJ. Undernutrition enhances alcohol-induced hepatocyte proliferation in the liver of rats fed via total enteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):G355–64.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Goel A, Gupta M, Aggarwal R. Gut microbiota and liver disease. J Gastroenterol Hepatol. 2014;29(6):1139–48.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Fedirko V, Tran HQ, Gewirtz AT, Stepien M, Trichopoulou A, Aleksandrova K, et al. Exposure to bacterial products lipopolysaccharide and flagellin and hepatocellular carcinoma: a nested case-control study. BMC Med. 2017;15(1):72.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kong SY, Tran HQ, Gewirtz AT, McKeown-Eyssen G, Fedirko V, Romieu I, et al. Serum endotoxins and flagellin and risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Cancer Epidemiol Biomark Prev. 2016;25(2):291–301.CrossRefGoogle Scholar
  101. 101.
    Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: a look at the evidence. Womens Health (Lond). 2015;11(1):65–77.CrossRefGoogle Scholar
  102. 102.
    Castro GD, de Castro CR, Maciel ME, Fanelli SL, de Ferreyra EC, Gomez MI, et al. Ethanol-induced oxidative stress and acetaldehyde formation in rat mammary tissue: potential factors involved in alcohol drinking promotion of breast cancer. Toxicology. 2006;219(1–3):208–19.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Saint-Jacques N, Parker L, Brown P, Dummer TJ. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health. 2014;13:44.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Karagas MR, Gossai A, Pierce B, Ahsan H. Drinking water arsenic contamination, skin lesions, and malignancies: a systematic review of the global evidence. Curr Environ Health Rep. 2015;2(1):52–68.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lamm SH, Ferdosi H, Dissen EK, Li J, Ahn J. A systematic review and meta-regression analysis of lung cancer risk and inorganic arsenic in drinking water. Int J Environ Res Public Health. 2015;12(12):15498–515.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Singh AP, Goel RK, Kaur T. Mechanisms pertaining to arsenic toxicity. Toxicol Int. 2011;18(2):87–93.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yang C, Frenkel K. Arsenic-mediated cellular signal transduction, transcription factor activation, and aberrant gene expression: implications in carcinogenesis. J Environ Pathol Toxicol Oncol. 2002;21(4):331–42.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Sagara Y, Miyata Y, Nomata K, Hayashi T, Kanetake H. Green tea polyphenol suppresses tumor invasion and angiogenesis in N-butyl-(−4-hydroxybutyl) nitrosamine-induced bladder cancer. Cancer Epidemiol. 2010;34(3):350–4.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Lee WJ, Zhu BT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis. 2006;27(2):269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber WW, Schilter B. Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem Toxicol. 2002;40(8):1155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lee KA, Chae JI, Shim JH. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J Biomed Sci. 2012;19:60.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Salomone F, Galvano F, Li VG. Molecular bases underlying the hepatoprotective effects of coffee. Nutrients. 2017;9(1)PubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ferrini RL, Barrett-Connor E. Caffeine intake and endogenous sex steroid levels in postmenopausal women. The Rancho Bernardo Study. Am J Epidemiol. 1996;144(7):642–4.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kotani K, Fujiwara S, Hamada T, Tsuzaki K, Sakane N. Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: response to Williams et al. Diabetes Care. 2008;31(5):e46; author reply e7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Nagata C, Kabuto M, Shimizu H. Association of coffee, green tea, and caffeine intakes with serum concentrations of estradiol and sex hormone-binding globulin in premenopausal Japanese women. Nutr Cancer. 1998;30(1):21–4.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Kotsopoulos J, Eliassen AH, Missmer SA, Hankinson SE, Tworoger SS. Relationship between caffeine intake and plasma sex hormone concentrations in premenopausal and postmenopausal women. Cancer. 2009;115(12):2765–74.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wu T, Willett WC, Hankinson SE, Giovannucci E. Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in U.S. women. Diabetes Care. 2005;28(6):1390–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Yamashita K, Yatsuya H, Muramatsu T, Toyoshima H, Murohara T, Tamakoshi K. Association of coffee consumption with serum adiponectin, leptin, inflammation and metabolic markers in Japanese workers: a cross-sectional study. Nutr Diabetes. 2012;2:e33.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Tjonneland A, et al. Metabolic syndrome, plasma lipid, lipoprotein and glucose levels, and endometrial cancer risk in the European Prospective investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer. 2007;14(3):755–67.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Luhn P, Dallal CM, Weiss JM, Black A, Huang WY, Lacey JV Jr, et al. Circulating adipokine levels and endometrial cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomark Prev. 2013;22(7):1304–12.CrossRefGoogle Scholar
  121. 121.
    Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115(5):911–9; quiz 20.CrossRefGoogle Scholar
  122. 122.
    Popkin BM, Hawkes C. Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 2016;4(2):174–86.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhu H, Yang X, Zhang C, Zhu C, Tao G, Zhao L, et al. Red and processed meat intake is associated with higher gastric cancer risk: a meta-analysis of epidemiological observational studies. PLoS One. 2013;8(8):e70955.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Rohrmann S, Linseisen J, Nothlings U, Overvad K, Egeberg R, Tjonneland A, et al. Meat and fish consumption and risk of pancreatic cancer: results from the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2013;132(3):617–24.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Xue XJ, Gao Q, Qiao JH, Zhang J, Xu CP, Liu J. Red and processed meat consumption and the risk of lung cancer: a dose-response meta-analysis of 33 published studies. Int J Clin Exp Med. 2014;7(6):1542–53.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Choi Y, Song S, Song Y, Lee JE. Consumption of red and processed meat and esophageal cancer risk: meta-analysis. World J Gastroenterol. 2013;19(7):1020–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Alexander DD, Weed DL, Miller PE, Mohamed MA. Red meat and colorectal cancer: a quantitative update on the state of the epidemiologic science. J Am Coll Nutr. 2015;34(6):521–43.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tatematsu M, Takahashi M, Fukushima S, Hananouchi M, Shirai T. Effects in rats of sodium chloride on experimental gastric cancers induced by N-methyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline-1-oxide. J Natl Cancer Inst. 1975;55(1):101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Dodd LE, Sengupta S, Chen IH, den Boon JA, Cheng YJ, Westra W, et al. Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev. 2006;15(11):2216–25.CrossRefGoogle Scholar
  131. 131.
    Fox JG, Dangler CA, Taylor NS, King A, Koh TJ, Wang TC. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances helicobacter pylori colonization in C57BL/6 mice. Cancer Res. 1999;59(19):4823–8.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol. 2014;12:164.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kim Y, Keogh J, Clifton P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism. 2015;64(7):768–79.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Hughes R, Cross AJ, Pollock JR, Bingham S. Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis. 2001;22(1):199–202.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Maskarinec G, Gotay CC, Tatsumura Y, Shumay DM, Kakai H. Perceived cancer causes: use of complementary and alternative therapy. Cancer Pract. 2001;9(4):183–90.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Molassiotis A, Fernadez-Ortega P, Pud D, Ozden G, Scott JA, Panteli V, et al. Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol. 2005;16(4):655–63.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Eschiti VS. Lesson from comparison of CAM use by women with female-specific cancers to others: it’s time to focus on interaction risks with CAM therapies. Integr Cancer Ther. 2007;6(4):313–44.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Huebner J, Marienfeld S, Abbenhardt C, Ulrich C, Muenstedt K, Micke O, et al. Counseling patients on cancer diets: a review of the literature and recommendations for clinical practice. Anticancer Res. 2014;34(1):39–48.PubMedPubMedCentralGoogle Scholar
  139. 139.
    World Cancer Research Fund. Cancer prevention recommendation. avalable from https://www.wcrf.org/sites/default/files/TER-Recommendation-2018-DUAL-WEB.jpg.
  140. 140.
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2012;14(3):CD007176.Google Scholar
  141. 141.
    Dolara P, Bigagli E, Collins A. Antioxidant vitamins and mineral supplementation, life span expansion and cancer incidence: a critical commentary. Eur J Nutr. 2012;51(7):769–81.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Bairati I, Meyer F, Gelinas M, Fortin A, Nabid A, Brochet F, et al. Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J Clin Oncol. 2005;23(24):5805–13.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Ferreira PR, Fleck JF, Diehl A, Barletta D, Braga-Filho A, Barletta A, et al. Protective effect of alpha-tocopherol in head and neck cancer radiation-induced mucositis: a double-blind randomized trial. Head Neck. 2004;26(4):313–21.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Bairati I, Meyer F, Jobin E, Gelinas M, Fortin A, Nabid A, et al. Antioxidant vitamins supplementation and mortality: a randomized trial in head and neck cancer patients. Int J Cancer. 2006;119(9):2221–4.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Meyer F, Bairati I, Fortin A, Gelinas M, Nabid A, Brochet F, et al. Interaction between antioxidant vitamin supplementation and cigarette smoking during radiation therapy in relation to long-term effects on recurrence and mortality: a randomized trial among head and neck cancer patients. Int J Cancer. 2008;122(7):1679–83.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Harvie M. Nutritional supplements and cancer: potential benefits and proven harms. Am Soc Clin Oncol Educ Book. 2014:e478–86.CrossRefGoogle Scholar
  147. 147.
    Pai PC, Chuang CC, Tseng CK, Tsang NM, Chang KP, Yen TC, et al. Impact of pretreatment body mass index on patients with head-and-neck cancer treated with radiation. Int J Radiat Oncol Biol Phys. 2012;83(1):e93–e100.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Doyle SL, Donohoe CL, Finn SP, Howard JM, Lithander FE, Reynolds JV, et al. IGF-1 and its receptor in esophageal cancer: association with adenocarcinoma and visceral obesity. Am J Gastroenterol. 2012;107(2):196–204.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Vanni E, Bugianesi E. Obesity and liver cancer. Clin Liver Dis. 2014;18(1):191–203.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Grigor’eva IN, Efimova OV, Suvorova TS, Tov NL. Pancreatitis, pancreatic cancer and obesity: hypothesis and facts. Eksp Klin Gastroenterol. 2014;9:4–10.Google Scholar
  151. 151.
    Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 2013;62(6):933–47.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol. 2015;1(5):611–21.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Sanfilippo KM, McTigue KM, Fidler CJ, Neaton JD, Chang Y, Fried LF, et al. Hypertension and obesity and the risk of kidney cancer in 2 large cohorts of US men and women. Hypertension. 2014;63(5):934–41.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Garai J, Uddo RB, Mohler MC, Pelligrino N, Scribner R, Sothern MS, et al. At the crossroad between obesity and gastric cancer. Methods Mol Biol. 2015;1238:689–707.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Wang F, Wang B, Qiao L. Association between obesity and gallbladder cancer. Front Biosci (Landmark Ed). 2012;17:2550–8.CrossRefGoogle Scholar
  156. 156.
    Zhang Y, Liu H, Yang S, Zhang J, Qian L, Chen X. Overweight, obesity and endometrial cancer risk: results from a systematic review and meta-analysis. Int J Biol Markers. 2014;29(1):e21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Valladares M, Corsini G, Romero C. Association between obesity and ovarian cancer. Rev Med Chil. 2014;142(5):593–8.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Frumovitz M, Jhingran A, Soliman PT, Klopp AH, Schmeler KM, Eifel PJ. Morbid obesity as an independent risk factor for disease-specific mortality in women with cervical cancer. Obstet Gynecol. 2014;124(6):1098–104.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Moller H, Roswall N, Van Hemelrijck M, Larsen SB, Cuzick J, Holmberg L, et al. Prostate cancer incidence, clinical stage and survival in relation to obesity: a prospective cohort study in Denmark. Int J Cancer. 2015;136(8):1940–7.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Travis RC, Key TJ. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003;5(5):239–47.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer. 2011;11(12):886–95.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9(4):212.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Gunter MJ, Wang T, Cushman M, Xue X, Wassertheil-Smoller S, Strickler HD, et al. Circulating Adipokines and Inflammatory Markers and Postmenopausal Breast Cancer Risk. J Natl Cancer Inst. 2015;107(9)Google Scholar
  164. 164.
    Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, et al. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2009;101(1):48–60.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomark Prev. 2002;11(12):1531–43.Google Scholar
  166. 166.
    Tahergorabi Z, Khazaei M, Moodi M, Chamani E. From obesity to cancer: a review on proposed mechanisms. Cell Biochem Funct. 2016;34(8):533–45.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Font-Burgada J, Sun B, Karin M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 2016;23(1):48–62.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Grubbs CJ, Farnell DR, Hill DL, McDonough KC. Chemoprevention of N-nitroso-N-methylurea-induced mammary cancers by pretreatment with 17 beta-estradiol and progesterone. J Natl Cancer Inst. 1985;74(4):927–31.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Poole EM, Tworoger SS, Hankinson SE, Schernhammer ES, Pollak MN, Baer HJ. Body size in early life and adult levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3. Am J Epidemiol. 2011;174(6):642–51.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Endogenous H, Breast Cancer Collaborative G, Key TJ, Appleby PN, Reeves GK, Roddam AW. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11(6):530–42.CrossRefGoogle Scholar
  171. 171.
    Khan FZ, Perumpail RB, Wong RJ, Ahmed A. Advances in hepatocellular carcinoma: nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J Hepatol. 2015;7(18):2155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 2010;51(5):1820–32.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Khankari NK, Shu XO, Wen W, Kraft P, Lindstrom S, Peters U, et al. Association between adult height and risk of colorectal, lung, and prostate cancer: results from meta-analyses of prospective studies and Mendelian randomization analyses. PLoS Med. 2016;13(9):e1002118.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Zhang B, Shu XO, Delahanty RJ, Zeng C, Michailidou K, Bolla MK, et al. Height and breast cancer risk: evidence from prospective studies and Mendelian randomization. J Natl Cancer Inst. 2015;107(11)Google Scholar
  175. 175.
    Aune D, Navarro Rosenblatt DA, Chan DS, Vingeliene S, Abar L, Vieira AR, et al. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. 2015;26(8):1635–48.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Kotsopoulos J, Moody JR, Fan I, Rosen B, Risch HA, McLaughlin JR, et al. Height, weight, BMI and ovarian cancer survival. Gynecol Oncol. 2012;127(1):83–7.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Liang S, Lv G, Chen W, Jiang J, Wang J. Height and kidney cancer risk: a meta-analysis of prospective studies. J Cancer Res Clin Oncol. 2015;141(10):1799–807.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Lahmann PH, Hughes MC, Williams GM, Green AC. A prospective study of measured body size and height and risk of keratinocyte cancers and melanoma. Cancer Epidemiol. 2016;40:119–25.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Gunnell D, Okasha M, Smith GD, Oliver SE, Sandhu J, Holly JM. Height, leg length, and cancer risk: a systematic review. Epidemiol Rev. 2001;23(2):313–42.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Bray I, Gunnell D, Holly JM, Middleton N, Davey Smith G, Martin RM. Associations of childhood and adulthood height and the components of height with insulin-like growth factor levels in adulthood: a 65-year follow-up of the Boyd Orr cohort. J Clin Endocrinol Metab. 2006;91(4):1382–9.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Albanes D, Winick M. Are cell number and cell proliferation risk factors for cancer? J Natl Cancer Inst. 1988;80(10):772–4.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Lagiou P, Hsieh CC, Lipworth L, Samoli E, Okulicz W, Troisi R, et al. Insulin-like growth factor levels in cord blood, birth weight and breast cancer risk. Br J Cancer. 2009;100(11):1794–8.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Meyle KD, Gamborg M, Sorensen TIA, Baker JL. Childhood body size and the risk of malignant melanoma in adulthood. Am J Epidemiol. 2017;185(8):673–80.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Bukowski R, Chlebowski RT, Thune I, Furberg AS, Hankins GD, Malone FD, et al. Birth weight, breast cancer and the potential mediating hormonal environment. PLoS One. 2012;7(7):e40199.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Nagata C, Iwasa S, Shiraki M, Shimizu H. Estrogen and alpha-fetoprotein levels in maternal and umbilical cord blood samples in relation to birth weight. Cancer Epidemiol Biomark Prev. 2006;15(8):1469–72.CrossRefGoogle Scholar
  186. 186.
    Sandvei MS, Lagiou P, Romundstad PR, Trichopoulos D, Vatten LJ. Size at birth and risk of breast cancer: update from a prospective population-based study. Eur J Epidemiol. 2015;30(6):485–92.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Opdahl S, Alsaker MD, Romundstad PR, Eskild A, Vatten LJ. Placental weight and breast cancer risk in young women: a registry-based cohort study from Norway. Cancer Epidemiol Biomark Prev. 2012;21(7):1060–5.CrossRefGoogle Scholar
  188. 188.
    Maehle BO, Vatten LJ, Tretli S. Birth length and weight as predictors of breast cancer prognosis. BMC Cancer. 2010;10:115.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Jasienska G, Ziomkiewicz A, Lipson SF, Thune I, Ellison PT. High ponderal index at birth predicts high estradiol levels in adult women. Am J Hum Biol. 2006;18(1):133–40.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998;351(9113):1393–6.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8(3):205–11.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92(18):1472–89.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Friedenreich CM, Neilson HK, Lynch BM. State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer. 2010;46(14):2593–604.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Brown SB, Hankinson SE. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids. 2015;99(Pt A):8–10.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Kaaks R, Berrino F, Key T, Rinaldi S, Dossus L, Biessy C, et al. Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2005;97(10):755–65.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    McNeilly AS, Tay CC, Glasier A. Physiological mechanisms underlying lactational amenorrhea. Ann N Y Acad Sci. 1994;709:145–55.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Klocking HP, Jablonowski C, Markwardt F. Studies on the release of plasminogen activator from the isolated rat lung by serine proteinases. Thromb Res. 1981;23(4–5):375–9.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Heys SD, Walker LG, Smith I, Eremin O. Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Ann Surg. 1999;229(4):467–77.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Waitzberg DL, Saito H, Plank LD, Jamieson GG, Jagannath P, Hwang TL, et al. Postsurgical infections are reduced with specialized nutrition support. World J Surg. 2006;30(8):1592–604.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Marik PE, Zaloga GP. Immunonutrition in high-risk surgical patients: a systematic review and analysis of the literature. JPEN J Parenter Enteral Nutr. 2010;34(4):378–86.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Mariette C. Immunonutrition. J Visc Surg. 2015;152(Suppl 1):S14–7.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Matsuda A, Furukawa K, Takasaki H, Suzuki H, Kan H, Tsuruta H, et al. Preoperative oral immune-enhancing nutritional supplementation corrects TH1/TH2 imbalance in patients undergoing elective surgery for colorectal cancer. Dis Colon Rectum. 2006;49(4):507–16.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Talvas J, Garrait G, Goncalves-Mendes N, Rouanet J, Vergnaud-Gauduchon J, Kwiatkowski F, et al. Immunonutrition stimulates immune functions and antioxidant defense capacities of leukocytes in radiochemotherapy-treated head & neck and esophageal cancer patients: a double-blind randomized clinical trial. Clin Nutr. 2015;34(5):810–7.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Osland E, Hossain MB, Khan S, Memon MA. Effect of timing of pharmaconutrition (immunonutrition) administration on outcomes of elective surgery for gastrointestinal malignancies: a systematic review and meta-analysis. JPEN J Parenter Enteral Nutr. 2014;38(1):53–69.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Nespoli L, Coppola S, Gianotti L. The role of the enteral route and the composition of feeds in the nutritional support of malnourished surgical patients. Nutrients. 2012;4(9):1230–6.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Gianotti L, Braga M, Fortis C, Soldini L, Vignali A, Colombo S, et al. A prospective, randomized clinical trial on perioperative feeding with an arginine-, omega-3 fatty acid-, and RNA-enriched enteral diet: effect on host response and nutritional status. JPEN J Parenter Enteral Nutr. 1999;23(6):314–20.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Beale RJ, Bryg DJ, Bihari DJ. Immunonutrition in the critically ill: a systematic review of clinical outcome. Crit Care Med. 1999;27(12):2799–805.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Gianotti L, Braga M, Nespoli L, Radaelli G, Beneduce A, Di Carlo V. A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology. 2002;122(7):1763–70.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laleh Sharifi
    • 1
    • 2
  1. 1.Uro-Oncology Research Center, Tehran University of Medical SciencesTehranIran
  2. 2.Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN)TehranIran

Personalised recommendations