Advertisement

Gut Microbiome and Immunity

  • Nila Ghanei
  • Amene Saghazadeh
  • Nima Rezaei
Chapter

Abstract

In addition to strengthening the physical mucosal barrier, the gut comprises the largest population of microflora that can boost both innate and adaptive immunity. Gut microbes exhibit immunosuppressive effects through induction of regulatory T cells and production of anti-inflammatory cytokines, especially interleukin-10. However, some microbes, such as segmented filamentous bacteria, are known to promote pro-inflammatory responses. Of note, both immunosuppressive and inflammatory effects can extend beyond the gut, even reaching the brain. Dysbiosis of the gut microbiota accompanies or even precedes the development of immune-mediated disorders. Consequently, several consensus consider gut microbiota as a target for treatment of health problems ranging from asthma, allergies, infections, autoimmune disorders, neuropsychiatric disorders, cardiometabolic disorders, and cancer. Although evidence suggests a critical time frame for normal acquisition of gut microbiota, dietary factors serve as a promising target for manipulating the gut microbiota to boost the immune system at every stage of life.

Keywords

Cancer Cytokines Gut microbiota IL-10 Immunity Immunotherapy Probiotics Regulatory T cells 

References

  1. 1.
    Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Tlaskalová-Hogenová H, Štěpánková R, Hudcovic T, Tučková L, Cukrowska B, Lodinová-Žádnıková R, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 2004;93(2–3):97–108.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Galdeano CM, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol. 2006;13(2):219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    MacDonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science. 2005;307(5717):1920.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2010;12(1):5.CrossRefGoogle Scholar
  6. 6.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 2000;287(5454):860–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.PubMedCrossRefGoogle Scholar
  9. 9.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wong P, Pamer EG. CD8 T cell responses to infectious pathogens. Annu Rev Immunol. 2003;21(1):29–70.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bedoya SK, Lam B, Lau K, Larkin J 3rd. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Round JL, Mazmanian SK. Inducible Foxp3+E regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci. 2010;107(27):12204.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 2008;9(2):194.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Xu L, Kitani A, Stuelten C, McGrady G, Fuss I, Strober W. Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity. 2010;33(3):313–25.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482(7385):395.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci. 2010;107(27):12204–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;27(350):1079–84.  https://doi.org/10.1126/science.aad1329.CrossRefGoogle Scholar
  20. 20.
    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci. 2008;105(43):16731–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455(7216):1109.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.  https://doi.org/10.1126/science.1179721.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–93.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Schiechl G, Bauer B, Fuss I, Lang SA, Moser C, Ruemmele P, et al. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest. 2011;121(5):1692–708.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wu H-J, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108(Supplement 1):4615–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci. 2004;101(7):1981–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hoarau C, Lagaraine C, Martin L, Velge-Roussel F, Lebranchu Y. Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survival through a Toll-like receptor 2 pathway. J Allergy Clin Immunol. 2006;117(3):696–702.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121(3):580–91.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Corthésy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacteria and the host immune system. J Nutr. 2007;137(3):781S–90S.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011;6(3):261.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ghanei N, Siassi F, Zandieh F. Prebiotic supplementation modulates serum immunoglobulin E levels and improves total SCORing atopic dermatitis score in children with atopic dermatitis: a randomized double blind controlled trial. Journal of Nutritional Sciences and Dietetics. 2015;1(2):80–5.Google Scholar
  36. 36.
    Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, et al. VSL# 3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol. 2005;100(7):1539.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hart A, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, et al. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004;53(11):1602–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jensen GS, Cash HA, Farmer S, Keller D. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro. J Inflamm Res. 2017;10:107–17.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Miyazawa K, Kawase M, Kubota A, Yoda K, Harata G, Hosoda M, et al. Heat-killed Lactobacillus gasseri can enhance immunity in the elderly in a double-blind, placebo-controlled clinical study. Benefic Microbes. 2015;6(4):441–9.CrossRefGoogle Scholar
  41. 41.
    Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465.PubMedCrossRefGoogle Scholar
  42. 42.
    Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357(9262):1076–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol. 2002;34(4):245–53.PubMedCrossRefGoogle Scholar
  44. 44.
    Sugahara H, Yao R, Odamaki T, Xiao J. Differences between live and heat-killed bifidobacteria in the regulation of immune function and the intestinal environment. Benefic Microbes. 2017;8(3):463–72.CrossRefGoogle Scholar
  45. 45.
    Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME. Probiotics and immunity. J Gastroenterol. 2009;44(1):26–46.PubMedCrossRefGoogle Scholar
  46. 46.
    Saubermann LJ, Beck P, De Jong YP, Pitman RS, Ryan MS, Kim HS, et al. Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology. 2000;119(1):119–28.PubMedCrossRefGoogle Scholar
  47. 47.
    Herias M, Hessle C, Telemo E, Midtvedt T, Hanson LÅ, Wold A. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats. Clin Exp Immunol. 1999;116(2):283.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pessi T, Sütas Y, Hurme M, Isolauri E. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy. 2000;30(12):1804–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Pessi T, Isolauri E, Sütas Y, Kankaanranta H, Moilanen E, Hurme M. Suppression of T-cell activation by Lactobacillus rhamnosus GG-degraded bovine casein. Int Immunopharmacol. 2001;1(2):211–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Sütas Y, Hurme M, Isolauri E. Down-regulation of anti-CD3 antibody-induced IL-4 production by bovine caseins hydrolysed with Lactobacillus GG-derived enzymes. Scand J Immunol. 1996;43(6):687–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kelsall BL, Biron CA, Sharma O, Kaye PM. Dendritic cells at the host-pathogen interface. Nat Immunol. 2002;3(8):699.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Rautava S, Arvilommi H, Isolauri E. Specific probiotics in enhancing maturation of IgA responses in formula-fed infants. Pediatr Res. 2006;60(2):221.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis. 2002;8(2):71–80.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Calcinaro F, Dionisi S, Marinaro M, Candeloro P, Bonato V, Marzotti S, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48(8):1565–75.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science. 2000;289(5484):1560–3.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Pérez N, Iannicelli JC, Girard-Bosch C, González S, Varea A, Disalvo L, et al. Effect of probiotic supplementation on immunoglobulins, isoagglutinins and antibody response in children of low socio-economic status. Eur J Nutr. 2010;49(3):173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Christensen HR, Frøkiær H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol. 2002;168(1):171–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zaylaa M, Al Kassaa I, Alard J, Peucelle V, Boutillier D, Desramaut J, et al. Probiotics in IBD: combining in vitro and in vivo models for selecting strains with both anti-inflammatory potential as well as a capacity to restore the gut epithelial barrier. J Funct Foods. 2018;47:304–15.CrossRefGoogle Scholar
  59. 59.
    Zheng B, van Bergenhenegouwen J, Overbeek S, van de Kant HJ, Garssen J, Folkerts G, et al. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses. PLoS One. 2014;9(5):e95441.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66(6):1300–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Amital H, Gilburd B, Shoenfeld Y. Probiotic supplementation with Lactobacillus casei (Actimel) induces a Th1 response in an animal model of antiphospholipid syndrome. Ann N Y Acad Sci. 2007;1110(1):661–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Tankou SK, Regev K, Healy BC, Tjon E, Laghi L, Cox LM, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. 2018;83:1147–61.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tankou SK, Regev K, Healy BC, Cox LM, Tjon E, Kivisakk P, et al. Investigation of probiotics in multiple sclerosis. Mult Scler J. 2018;24(1):58–63.CrossRefGoogle Scholar
  64. 64.
    Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154(2):230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242.PubMedCrossRefGoogle Scholar
  66. 66.
    Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRefGoogle Scholar
  68. 68.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446.PubMedCrossRefGoogle Scholar
  69. 69.
    Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol. 2008;9(1):65.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Cani PD, Rodrigo B, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.CrossRefGoogle Scholar
  72. 72.
    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Werner T, Wagner SJ, Martínez I, Walter J, Chang J-S, Clavel T, et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut. 2011;60(3):325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64(6):872–83.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kirjavainen PV, Arvola T, Salminen SJ, Isolauri E. Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut. 2002;51(1):51–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842–50.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kamada N, Seo S-U, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2014;67(1):128–39.CrossRefGoogle Scholar
  79. 79.
    Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013;14(3):329–39.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lee SC, San Tang M, Lim YAL, Choy SH, Kurtz ZD, Cox LM, et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis. 2014;8(5):e2880.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Liu AH. Revisiting the hygiene hypothesis for allergy and asthma. J Allergy Clin Immunol. 2015;136(4):860–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8(3):292–300.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701.PubMedCrossRefGoogle Scholar
  85. 85.
    Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–95.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Horne R, Foster JA. Metabolic and microbiota measures as peripheral biomarkers in major depressive disorder. Front Psych. 2018;9:513.CrossRefGoogle Scholar
  87. 87.
    Cuomo A, Maina G, Rosso G, Beccarini Crescenzi B, Bolognesi S, Di Muro A, et al. The microbiome: a new target for research and treatment of schizophrenia and its resistant presentations? A Systematic Literature Search and Review. Front Pharmacol. 2018;9:1040.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Maes M, Twisk FNM, Kubera M, Ringel K, Leunis J-C, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord. 2012;136(3):909–17.PubMedCrossRefGoogle Scholar
  89. 89.
    Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167(6):1469–80.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T-J, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338(6103):120–3.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6(2):320.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nila Ghanei
    • 1
    • 2
  • Amene Saghazadeh
    • 3
    • 4
  • Nima Rezaei
    • 3
    • 5
    • 6
  1. 1.Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn UniversityAuburnUSA
  2. 2.Dietetics and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical SciencesTehranIran
  4. 4.Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN)TehranIran
  5. 5.Department of Immunology, School of Medicine, Tehran University of Medical SciencesTehranIran
  6. 6.Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN)TehranIran

Personalised recommendations