Curious2018 pp 105-117 | Cite as

Colloidal Quantum Materials for Photocatalytic Applications

  • Nir Waiskopf
  • Uri BaninEmail author


Colloidal quantum materials are nanocrystals containing hundreds to thousands of atoms that exhibit unique properties resulting from their small finite dimensions. The extraordinary flexibility in tuning their properties via composition, size- and dimensionality-related quantum confinement effects and surface engineering combined with their scalable bottom-up manufacturing has already led to their commercialization in different light-emitting applications, such as materials for displays and as fluorescent agents for imaging and sensing. Beyond light emission, harnessing absorbed light energy to perform useful chemical work is an important new avenue for diverse applications of the colloidal quantum materials. Here, we introduce the colloidal quantum materials and their virtues, focusing on the “all-in-one system” concept for semiconductor–metal hybrid nanoparticles acting as photocatalysts. Next, their emerging photocatalytic functionalities are highlighted, including their action as photocatalysts for solar-to-fuel conversion and as photoinitiators for photo-curing and biomedical applications, such as phototherapy, sterilization, and diagnostics.


Quantum materials Semiconductor–metal hybrid nanoparticles Photocatalysts Photoinitiators Reactive oxygen species Hydrogen generation 3D printing Photo-curing 



This work was supported by the Israel Science Foundation–Alternative Fuels Program Center of Excellence (grant #1867/17).


  1. 1.
    Tyrakowski CM, Snee PT. Phys. Chem. Chem. Phys. 2014;16:837.Google Scholar
  2. 2.
    Veamatahau A, Jiang B, Seifert T, Makuta S, Latham K, Kanehara M, Teranishi T, Tachibana Y. Phys. Chem. Chem. Phys. 2015;17:2850.CrossRefGoogle Scholar
  3. 3.
    Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Nat. Biotechnol. 2003;21:41.Google Scholar
  4. 4.
    Resch-genger U, Grabolle M, Cavaliere-jaricot S, Nitschke R, Nann T. Nat. Methods 2008;5:763.CrossRefGoogle Scholar
  5. 5.
    Maestro LM, Ramírez-Hernández JE, Bogdan N, Capobianco JA, Vetrone F, Solé JG, Jaque D. Nanoscale 2012;4:298.Google Scholar
  6. 6.
    Maestro LM, Rodríguez EM, Rodríguez FS, la Cruz MCI, Juarranz A, Naccache R, Vetrone F, Jaque D, Capobianco JA, Solé JG. Nano Lett. 2010;10(12):5109.Google Scholar
  7. 7.
    Ohmachi M, Komori Y, Iwane AH, Fujii F, Jin T, Yanagida T. Proc. Natl. Acad. Sci. USA. 2012;109:5294.CrossRefGoogle Scholar
  8. 8.
    Watanabe TM, Fujii F, Jin T, Umemoto E, Miyasaka M, Fujita H, Yanagida T. Biophys. J. 2013;105:555.CrossRefGoogle Scholar
  9. 9.
    Panfil YE, Oded M, Banin U. Angew. Chemie. Int. Ed. 2018;57:4274.CrossRefGoogle Scholar
  10. 10.
    Mokari T, Rothenberg E, Popov I, Costi R, Banin U. Science 2004;304:1787.Google Scholar
  11. 11.
    Banin U, Ben-Shahar Y, Vinokurov K. Chem. Mater. 2014;26:97.CrossRefGoogle Scholar
  12. 12.
    Chen WT, Yang TT, Hsu YJ. Chem. Mater. 2008;20:7204.CrossRefGoogle Scholar
  13. 13.
    Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U. Chem. Mater. 2008;20:6900.CrossRefGoogle Scholar
  14. 14.
    Waiskopf N, Ben-Shahar Y, Banin U. Adv. Mater. 2018;30:1706697.CrossRefGoogle Scholar
  15. 15.
    Jakob M, Levanon H, Kamat PV. Nano Lett. 2003;3:353.CrossRefGoogle Scholar
  16. 16.
    Redmond PL, Hallock AJ, Brus LE. Nano Lett. 2005;5:131.Google Scholar
  17. 17.
    Ben-Shahar Y, Scotognella F, Kriegel I, Moretti L, Cerullo G, Rabani E, Banin U. Nat. Commun. 2016;7:10413.CrossRefGoogle Scholar
  18. 18.
    Amirav L, Alivisatos AP. J. Phys. Chem. Lett. 2010;1:1051.CrossRefGoogle Scholar
  19. 19.
    Ben-Shahar Y, Scotognella F, Waiskopf N, Kriegel I, Dal Conte S, Cerullo G, Banin U. Small 2015;11:462.CrossRefGoogle Scholar
  20. 20.
    Aldana J, Lavelle N, Wang Y, Peng X. J. Am. Chem. Soc. 2005;127:2496.CrossRefGoogle Scholar
  21. 21.
    Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrović A, Volbers D, Wyrwich R, Döblinger M, Susha AS, Rogach AL, Jäckel F, Stolarczyk JK, Feldmann J. Nat. Mater. 2014;13(11):1013.CrossRefGoogle Scholar
  22. 22.
    Kalisman P, Nakibli Y, Amirav L. Nano Lett. 2016;16:1776.CrossRefGoogle Scholar
  23. 23.
    Berr MJ, Wagner P, Fischbach S, Vaneski A, Schneider J, Susha AS, Rogach AL, Jaeckel F, Feldmann J, Jäckel F, Feldmann J. Appl. Phys. Lett. 2012;100:223903.CrossRefGoogle Scholar
  24. 24.
    Nosaka Y, Nosaka AY. Chem. Rev. 2017;117:11302.CrossRefGoogle Scholar
  25. 25.
    Mtangi W, Tassinari F, Vankayala K, Vargas Jentzsch A, Adelizzi B, Palmans ARA, Fontanesi C, Meijer EW, Naaman R. J. Am. Chem. Soc. 2017;139:2794.Google Scholar
  26. 26.
    Waiskopf N, Ben-Shahar Y, Galchenko M, Carmel I, Moshitzky G, Soreq H, Banin U. Nano Lett. 2016;16:4266.CrossRefGoogle Scholar
  27. 27.
    Ipe BI, Lehnig M, Niemeyer CM. Small 2005;1:706.CrossRefGoogle Scholar
  28. 28.
    Stone D, Ben-Shahar Y, Waiskopf N, Banin U. ChemCatChem 2018;10:5119.Google Scholar
  29. 29.
    Rajendran V, Lehnig M, Niemeyer CM. J. Mater. Chem. 2009;19:6348.CrossRefGoogle Scholar
  30. 30.
    Pawar AA, Halivni S, Waiskopf N, Ben-Shahar Y, Soreni-Harari M, Bergbreiter S, Banin U, Magdassi S. Nano Lett. 2017;17:4497.CrossRefGoogle Scholar
  31. 31.
    Fan J-X, Liu M-D, Li C-X, Hong S, Zheng D-W, Liu X-H, Chen S, Cheng H, Zhang X-Z. Nanoscale Horiz. 2017;2:349.CrossRefGoogle Scholar
  32. 32.
    He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ. J. Am. Chem. Soc. 2014;136:750.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Institute of Chemistry, The Hebrew University of JerusalemGivst RamIsrael

Personalised recommendations