Advertisement

Eukaryotes

  • Roberto Ligrone
Chapter

Abstract

The eukaryote pangenome has a chimeric structure encompassing genes unique to eukaryotes (~41%), and genes of bacterial (~50% of total) and archaeal ancestry (~9%). Crucially, bacterial sequences far exceed the set acquired from the proteobacterial ancestor of mitochondria. Extant eukaryotic lineages share a common ancestor (LECA) that had all the fundamental traits of eukaryotes including the mitochondrion. The current debate about eukaryote origins revolves around two competing scenarios. The fusion model posits that the eukaryotes derive from the “fusion” of an archaeon and a bacterium, and that the acquisition of the mitochondrion was pivotal to the evolution of other eukaryotic traits. The neomuran model maintains that the archaea and eukaryotes are sister groups devived from a bacterial ancestor, and that fundamental eukaryotic traits including phagocytosis were already in place before the evolution of the mitochondrion by endosymbiosis. Eukaryote placement within the archaea in phylogenomic analysis supports the fusion scenario. The predominance of bacterial sequences in the eukaryote pangenome, the bacterial stereochemistry of eukaryote membrane lipids, and similar trajectories in mitochondrial and chloroplast evolution favour the neomuran scenario. Phylogenomic analysis resolves two major eukaryotic domains, the Amorphea and Diaphoretika, with traditional Excavata being probably paraphyletic. The root of the eukaryote tree remains elusive. Paleontological evidence and molecular clock analysis date the eukaryote lineage to at least 1.5 GYA, the concestor of extant eukaryotes to about 1.2 GYA, and major extant lineages to 900 MYA or less. The chapter includes a review of mitochondrial properties and of locomotor organelles in bacteria, archaea and eukaryotes.

References

  1. Abby SS, Rocha EPC (2012) The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 8:e1002983.  https://doi.org/10.1371/journal.pgen.1002983 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adl SM et al (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56:684–689.  https://doi.org/10.1080/10635150701494127 CrossRefPubMedGoogle Scholar
  3. Adl SM et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493.  https://doi.org/10.1111/j.1550-7408.2012.00644.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Adl SM et al (2018) Revisions to the nomenclature, classification and diversity of eukaryotes. J Eukaryot Microbiol.  https://doi.org/10.1111/jeu.12691
  5. Albers SV, Jarrell KF (2015a) Archaellum moves Archaea with distinction. Microbe 10:283–288Google Scholar
  6. Albers SV, Jarrell KF (2015b) The archaellum: how Archaea swim. Front Microbiol 6:23.  https://doi.org/10.3389/fmicb.2015.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Allen JF (2003) Why chloroplasts and mitochondria contain genomes. Comp Funct Genomics 4:31–36PubMedPubMedCentralCrossRefGoogle Scholar
  8. Allen JWA et al (2008) Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 275:2385–2402PubMedCrossRefGoogle Scholar
  9. Amodeo AA, Skotheim JM (2016) Cell-size control. Cold Spring Harb Perspect Biol 8:a019083.  https://doi.org/10.1101/cshperspect.a019083 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921.  https://doi.org/10.1016/j.cub.2015.07.055 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Archibald JM et al (eds) (2017) Handbook of the protists. Springer International Publishing AG, ChamGoogle Scholar
  12. Arimura A (2018) Fission and fusion of plant mitochondria, and genome maintenance. Plant Physiol 176:152–171PubMedCrossRefGoogle Scholar
  13. Azimzadeh J (2014) Exploring the evolutionary history of centrosomes. Philos Trans R Soc B 369:20130453.  https://doi.org/10.1098/rstb.2013.0453 CrossRefGoogle Scholar
  14. Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263–273Google Scholar
  15. Ball SG, Bhattacharya D, Weber APM (2016) Pathogen to powerhouse. Science 351:659–660PubMedCrossRefGoogle Scholar
  16. Barbrook AC et al (2010) Organization and expression of organellar genomes. Philos Trans R Soc B 365:785–797CrossRefGoogle Scholar
  17. Baum DA, Baum B (2014) An inside-out origin for the eukaryotic cell. BMC Biol 12(76). http://www.biomedcentral.com/1741-7007/12/76
  18. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54.  https://doi.org/10.1146/annurev.biochem.72.121801.161737 CrossRefPubMedGoogle Scholar
  19. Brawley SH et al (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). PNAS. www.pnas.org/cgi/doi/10.1073/pnas.1703088114
  20. Briggs LJ et al (2003) The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. J Cell Sci 117:1641–1651CrossRefGoogle Scholar
  21. Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33:3390–3400PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brocks JJ et al (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brocks JJ et al (2015) Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14:129–149PubMedCrossRefGoogle Scholar
  24. Brown RC, Lemmon BE (2011) Dividing without centrioles: innovative plant microtubule organizing centres organize mitotic spindles in bryophytes, the earliest extant lineages of land plants. AoB PLANTS 2011:plr028.  https://doi.org/10.1093/aobpla/plr028 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Brown MW et al (2018) Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol 10:427–433PubMedPubMedCentralCrossRefGoogle Scholar
  26. Burger G et al (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418–438PubMedPubMedCentralCrossRefGoogle Scholar
  27. Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6:a016147.  https://doi.org/10.1101/cshperspect.a016147 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new “megagroup” including most photosynthetic eukaryotes. Biol Lett 4:366–369PubMedPubMedCentralCrossRefGoogle Scholar
  29. Burki F et al (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802.  https://doi.org/10.1098/rspb.2015.2802 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Carey N (2015) Junk DNA. A journey through the dark matter of the genome. Icon Books, LondonCrossRefGoogle Scholar
  31. Carvalho-Santos Z et al (2011) Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 194:165–175. www.jcb.org/cgi/doi/10.1083/jcb.201011152 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cavalier-Smith T (2002a) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76PubMedCrossRefGoogle Scholar
  33. Cavalier-Smith T (2002b) The phagotrophic origin of eukaryotes and phylogenetic classification of Protists. Int J Syst Evol Microbiol 52:297–354PubMedCrossRefGoogle Scholar
  34. Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:147–175PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc B 361(1470):969–1006CrossRefGoogle Scholar
  36. Cavalier-Smith T (2009) Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. J Eukaryot Microbiol 56:26–33PubMedCrossRefGoogle Scholar
  37. Cavalier-Smith T (2010a) Kingdoms Protists and Chromista and the eozoan root of eukaryotes. Biol Lett 6:342–345PubMedCrossRefGoogle Scholar
  38. Cavalier-Smith T (2010b) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 5:7. http://www.biology-direct.com/content/5/1/7 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cavalier-Smith T (2013) Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protistsn phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 49:115–178PubMedCrossRefGoogle Scholar
  40. Cavalier-Smith T (2014) The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol 6:a016006.  https://doi.org/10.1101/cshperspect.a016006 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cavalier-Smith T (2016) Higher classification and phylogeny of Euglenozoa. Eur J Protistol 56:250–276PubMedCrossRefGoogle Scholar
  42. Cavalier-Smith T et al (2014) Multigene phylogeny resolves deep branching of Amoebozoa. Mol Phylogenet Evol 83:293–304PubMedCrossRefGoogle Scholar
  43. Cavalier-Smith T, Chao EE, Lewis R (2015) Multiple origins of Heliozoa from flagellate ancestors: new cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol Phylogenet Evol 93:331–362PubMedCrossRefPubMedCentralGoogle Scholar
  44. Cavalier-Smith T, Chao EE, Lewis R (2016) 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol Phylogenet Evol 99:275–296PubMedCrossRefGoogle Scholar
  45. Cavicchioli R (2006) Cold-adapted Archaea. Nat Rev Microbiol 4:331–343PubMedCrossRefGoogle Scholar
  46. Chen S et al (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981PubMedPubMedCentralCrossRefGoogle Scholar
  47. Cox CJ et al (2008) The archaebacterial origin of eukaryotes. Proc Natl Acad Sci U S A 105:20356–20361PubMedPubMedCentralCrossRefGoogle Scholar
  48. Csűrös M, Miklòs I (2009) Streamlining and large ancestral genomes in archaea inferred with a phylogenetic birth-and-death model. Mol Biol Evol 26:2087–2095PubMedPubMedCentralCrossRefGoogle Scholar
  49. Danovaro R et al (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8(30). http://www.biomedcentral.com/1741-7007/8/30
  50. Dawe HR, Farr H, Gull K (2007) Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120:7–15PubMedCrossRefGoogle Scholar
  51. Dawson SC, House SA (2010) Life with eight flagella: flagellar assembly and division in Giardia. Curr Opin Microbiol 13:480–490PubMedPubMedCentralCrossRefGoogle Scholar
  52. De Martino A, Amato A, Bowler C (2009) Mitosis in diatoms: rediscovering an old model for cell division. BioEssays 31:874–884PubMedCrossRefGoogle Scholar
  53. de Vargas C et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605.  https://doi.org/10.1126/science.1261605 CrossRefGoogle Scholar
  54. Derelle R, Lang BF (2012) Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol 29:1277–1289PubMedCrossRefGoogle Scholar
  55. Derelle R et al (2015) Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A 112:E693–E699.  https://doi.org/10.1073/pnas.1420657112 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Desmond E et al (2011) On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70PubMedCrossRefGoogle Scholar
  57. Dey G, Thattai M, Baum B (2016) On the archaeal origins of eukaryotes and the challenges of inferring phenotype from genotype. Trends Cell Biol 26:476–485PubMedPubMedCentralCrossRefGoogle Scholar
  58. Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311PubMedCrossRefGoogle Scholar
  59. Douglas AE (2014) Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb Perspect Biol 6:a016113PubMedPubMedCentralCrossRefGoogle Scholar
  60. Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci 101(43):15386–15391PubMedCrossRefGoogle Scholar
  61. Drechsler H, McAinsh AD (2012) Exotic mitotic mechanisms. Open Biol 2:120140.  https://doi.org/10.1098/rsob.120140 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Dunn CD (2017) Some liked it hot: hypothesis regarding establishment of the proto-mitochondrial endosymbiont during eukaryogenesis. J Mol Evol 85:99–106PubMedPubMedCentralCrossRefGoogle Scholar
  63. Egan AJ, Vollmer W (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28PubMedCrossRefGoogle Scholar
  64. Elliott TA, Gregory TR (2015) What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc B 370:20140331.  https://doi.org/10.1098/rstb.2014.0331 CrossRefGoogle Scholar
  65. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630PubMedCrossRefGoogle Scholar
  66. Eme L et al (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 6:a016139.  https://doi.org/10.1101/cshperspect.a016139 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Errington J (2013) L-form bacteria, cell walls and the origins of life. Open Biol 3:120143.  https://doi.org/10.1098/rsob.120143 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Findeisen P et al (2014) Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 6:2274–2288PubMedPubMedCentralCrossRefGoogle Scholar
  69. Francia ME, Striepen B (2014) Cell division in apicomplexan parasites. Nat Rev Microbiol 12:125–136.  https://doi.org/10.1038/nrmicro3184 CrossRefPubMedGoogle Scholar
  70. French KL et al (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci U S A 112:5915–5920PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fritz-Laylin LK et al (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642PubMedCrossRefGoogle Scholar
  72. Fu J, Hagan IM, Glover DM (2015) The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol 7(2):a015800PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ghosh A, Albers SV (2011) Assembly and function of the archaeal flagellum. Biochem Soc Trans 39:64–69PubMedCrossRefGoogle Scholar
  74. Gräf R (2015) Microtubule organisation in Dictyostelium. eLS.  https://doi.org/10.1002/9780470015902.a0021852.pub2
  75. Gray MW (2014) The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria. Cold Spring Harb Perspect Biol 6:a016097PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gray MW (2015) Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A 112:10133–10138PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699–708PubMedCrossRefGoogle Scholar
  78. Greiner S, Sobanski J, Bock R (2014) Why are most organelle genomes transmitted maternally? BioEssays 37:80–94PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc B 361:1007–1022CrossRefGoogle Scholar
  80. Gribaldo S et al (2010) The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 8:743–752PubMedCrossRefGoogle Scholar
  81. Guy L, Saw JH, Ettema TJH (2014) The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb Perspect Biol 6:a016022.  https://doi.org/10.1101/cshperspect.a016022 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Hampl V et al (2008) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864CrossRefGoogle Scholar
  83. He D et al (2014) An alternative root for the eukaryote tree of life. Curr Biol 24:465–470.  https://doi.org/10.1016/j.cub.2014.01.036 CrossRefPubMedGoogle Scholar
  84. Hedges SB et al (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2.  https://doi.org/10.1186/1471-2148-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hjort K et al (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc B 365:713–727CrossRefGoogle Scholar
  86. Hughes KT (2017) Flagellum length control: how long is long enough? Curr Biol 27:R413–R415PubMedCrossRefGoogle Scholar
  87. Idei M et al (2013) Sperm ultrastructure in the diatoms Melosira and Thalassiosira and the significance of the 9+0 configuration. Protoplasma 250:833–850PubMedCrossRefGoogle Scholar
  88. Irimia M, Roy SW (2014) Origin of spliceosomal introns and alternative splicing. Cold Spring Harb Perspect Biol 6:a016071PubMedPubMedCentralCrossRefGoogle Scholar
  89. Isson TT et al (2018) Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology 16:341–352PubMedCrossRefGoogle Scholar
  90. Jarrell KF, Albers SV (2012) The archaellum: an old motility structure with a new name. Trends Microbiol 20:307–312PubMedCrossRefGoogle Scholar
  91. Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nature 6:466–476Google Scholar
  92. Jékely G (2008) Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct 3(1):31PubMedPubMedCentralCrossRefGoogle Scholar
  93. Jékely G, Arendt D (2006) Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. BioEssays 28:191–198PubMedCrossRefGoogle Scholar
  94. Karnkowska A et al (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284PubMedCrossRefGoogle Scholar
  95. Katz LA (2015) Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist. Philos Trans R Soc B 370:20140324.  https://doi.org/10.1098/rstb.2014.0324 CrossRefGoogle Scholar
  96. Katz LA, Grant JR (2015) Taxon-rich phylogenomic analyses resolve thee ukaryotic tree of life and reveal the power of subsampling by sites. Syst Biol 64:406–415PubMedCrossRefGoogle Scholar
  97. Katz LA et al (2012) Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol 61:653–660PubMedPubMedCentralCrossRefGoogle Scholar
  98. Keeling PJ (1998) A kingdom’s progress: Archaezoa and the origin of eukaryotes. BioEssays 20:87–95CrossRefGoogle Scholar
  99. Keeling PJ (2014) The impact of history on our perception of evolutionary events: endosymbiosis and the origin of eukaryotic complexity. Cold Spring Harb Perspect Biol 6:a016196.  https://doi.org/10.1101/cshperspect.a016196 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Klinger CM et al (2016) Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 33:1528–1541PubMedCrossRefGoogle Scholar
  101. Knoll AH (2014) Paleontology of eukaryotes. Cold Spring Harb Perspect Biol 6:a016121.  https://doi.org/10.1101/cshperspect.a016121 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans Royal Soc B 361(1470):1023–1038CrossRefGoogle Scholar
  103. Kodner RB et al (2008) Sterols in red and green algae: quantification, phylogeny and relevance for the interpretation of geologic steranes. Geobiology 6:411–420PubMedCrossRefGoogle Scholar
  104. Konhauser K (2007) Introduction to geomicrobiology. Blackwell, Oxford. ISBN 13: 9780632054541Google Scholar
  105. Koonin EV (2010) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11:209–221PubMedPubMedCentralCrossRefGoogle Scholar
  106. Koonin EV (2015a) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc B 370:20140333.  https://doi.org/10.1098/rstb.2014.0333 CrossRefGoogle Scholar
  107. Koonin EV (2015b) Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol 13:84.  https://doi.org/10.1186/s12915-015-0194-5 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Koonin EV, Yutin N (2014) The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb Perspect Biol 6:a016188.  https://doi.org/10.1101/cshperspect.a016188 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Koreny L, Field MC (2016) Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol 8:2663–2671PubMedPubMedCentralCrossRefGoogle Scholar
  110. Koumandou VL et al (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 48:373–396PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ku et al (2015) Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A 112:10139–10146PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kühlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:89.  https://doi.org/10.1186/s12915-015-0201-x CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014PubMedCrossRefGoogle Scholar
  114. Lackner LL (2014) Shaping the dynamic mitochondrial network. BMC Biol 12(1). http://www.biomedcentral.com/1741-7007/12/35
  115. Lake JA (2015) Eukaryotic origins. Philos Trans R Soc B 370:20140321.  https://doi.org/10.1098/rstb.2014.0321 CrossRefGoogle Scholar
  116. Lane N (2011) Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 6:35. http://www.biology-direct.com/content/6/1/35 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lane N (2014) Bioenergetic constraints on the evolution of complex life. Cold Spring Harb Perspect Biol 6:a015982.  https://doi.org/10.1101/cshperspect.a015982 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Lane N (2015) The vital question. Why is life the way it is? Profile Books Ltd, LondonGoogle Scholar
  119. Lane N (2017) Serial endosymbiosis or singular event at the origin of eukaryotes? J Theor Biol 434:58–67PubMedCrossRefGoogle Scholar
  120. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934PubMedCrossRefGoogle Scholar
  121. Leander BS (2012) Euglenida. Euglenids or euglenoids. Version 10 November 2012 http://tolweb.org/Euglenida/97461/2012.11.10 in The Tree of Life Web Project, http://tolweb.org/
  122. Leger MM et al (2015) An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A 112:10239–10246PubMedPubMedCentralCrossRefGoogle Scholar
  123. Leger MM et al (2017) Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 1:0092.  https://doi.org/10.1038/s41559-017-0092 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Levin PA, Angert ER (2015) Small but mighty: cell size and bacteria. Cold Spring Harb Perspect Biol 7:a01921.  https://doi.org/10.1101/cshperspect.a019216 CrossRefGoogle Scholar
  125. Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc B 365:799–816CrossRefGoogle Scholar
  126. Loewe L (2008) Negative selection. Nat Educ 1:59Google Scholar
  127. Lücking R et al (2009) Fungi evolved right on track. Mycologia 101:810–822PubMedCrossRefGoogle Scholar
  128. Makarova KS, Koonin EV (2013) Archaeology of eukaryotic DNA replication. Cold Spring Harb Perspect Biol 5:a012963.  https://doi.org/10.1101/cshperspect.a012963 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Margulis L (1970) Origin of eukaryotic cells. In: Yale University Press. New Haven, USAGoogle Scholar
  130. Mariscal C, Doolittle WF (2015) Eukaryotes first: how could that be? Philos Trans R Soc B 370:20140322.  https://doi.org/10.1098/rstb.2014.0322 CrossRefGoogle Scholar
  131. Marshall WF et al (2012) What determines cell sizes? BMC Biol 10:101. http://www.biomedcentral.com/1741-7007/10/101 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45PubMedCrossRefGoogle Scholar
  133. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedCrossRefGoogle Scholar
  134. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc B 358:59–85CrossRefGoogle Scholar
  135. Martin W, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc B 370:20140330.  https://doi.org/10.1098/rstb.2014.0330 CrossRefGoogle Scholar
  136. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  137. McInerney JO et al (2011) Planctomycetes and eukaryotes: a case of analogy not homology. BioEssays 33:810–817PubMedPubMedCentralCrossRefGoogle Scholar
  138. McIntosh JR (2016) Mitosis. Cold Spring Harb Perspect Biol 8:a023218.  https://doi.org/10.1101/cshperspect.a023218 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Michie KA, Löwe J (2008) Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem 75:467–492CrossRefGoogle Scholar
  140. Mitchell DR (2004) Speculations on the evolution of 9+2 organelles and the role of central pair microtubules. Biol Cell 96:691–696PubMedPubMedCentralCrossRefGoogle Scholar
  141. Mitchell DR (2007) The evolution of eukaryotic cilia and flagella as motile and sensory organelles. Adv Exp Med Biol 607:130–140PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mitchell DR (2016) Evolution of cilia. Cold Spring Harb Perspect Biol 9.  https://doi.org/10.1101/cshperspect.a028290 CrossRefGoogle Scholar
  143. Moran J, McKean PG, Ginger ML (2014) Eukaryotic flagella: variations in form, function, and composition during evolution. Bioscience 64:1103–1114.  https://doi.org/10.1093/biosci/biu175 CrossRefGoogle Scholar
  144. Moreira D, Lòpez-Garcìa P (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47:517–530PubMedCrossRefPubMedCentralGoogle Scholar
  145. Murat D, Byrne M, Komeili A (2010) Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol 2:a000422.  https://doi.org/10.1101/cshperspect.a000422 CrossRefPubMedPubMedCentralGoogle Scholar
  146. O’Malley MA (2010) The first eukaryote cell: an unfinished history of contestation. Stud Hist Phil Biol Biomed Sci 41:212–224CrossRefGoogle Scholar
  147. Pace NR (2009) Mapping the Tree of Life: progress and prospects. Microbiol Mol Biol Rev 73:565–576PubMedPubMedCentralCrossRefGoogle Scholar
  148. Pánek T et al (2016) First multigene analysis of Archamoebae (Amoebozoa: Conosa) robustly reveals its phylogeny and shows that Entamoebidae represents a deep lineage of the group. Mol Phylogenet Evol 98:41–51PubMedCrossRefGoogle Scholar
  149. Paps J et al (2013) Molecular phylogeny of Unikonts: new insights into the position of Apusomonads and Ancyromonads and the internal relationships of Opisthokonts. Protist 164:2–12PubMedCrossRefPubMedCentralGoogle Scholar
  150. Pawlowski J et al (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal ingdoms. PLoS Biol 10:e1001419PubMedPubMedCentralCrossRefGoogle Scholar
  151. Pearson CG, Winey M (2009) Basal body assembly in ciliates: the power of numbers. Traffic 10:461–471PubMedPubMedCentralCrossRefGoogle Scholar
  152. Petitjean C et al (2015) Extending the conserved phylogenetic core of Archaea disentangles the evolution of the third domain of life. Mol Biol Evol 32:1242–1254PubMedCrossRefGoogle Scholar
  153. Poole AM, Neumann N (2011) Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162:71–76PubMedCrossRefGoogle Scholar
  154. Poole AM, Penny D (2006) Evaluating hypotheses for the origin of eukaryotes. BioEssays 29:74–84CrossRefGoogle Scholar
  155. Radzvilavicius AL, Lane N, Pomiankowski A (2017) Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance. BMC Biol 15:94.  https://doi.org/10.1186/s12915-017-0437-8 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Rasmussen B et al (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104CrossRefGoogle Scholar
  157. Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the archaea. Proc Natl Acad Sci U S A 112:6670–6675PubMedPubMedCentralCrossRefGoogle Scholar
  158. Rice DW et al (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473PubMedCrossRefPubMedCentralGoogle Scholar
  159. Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118PubMedCrossRefPubMedCentralGoogle Scholar
  160. Rinke W et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437CrossRefGoogle Scholar
  161. Roger AJ, Simpson AGB (2009) Evolution: revisiting the root of the eukaryote tree. Curr Biol 19:R165–R166.  https://doi.org/10.1016/j.cub.2008.12.032 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192PubMedCrossRefPubMedCentralGoogle Scholar
  163. Rowlett VW, Margolin W (2015) The bacterial divisome: ready for its close-up. Philos Trans R Soc B 370:20150028.  https://doi.org/10.1098/rstb.2015.0028 CrossRefGoogle Scholar
  164. Ruggiero MA et al (2015) A higher level classification of all living organisms. PLoS One 10(4):e0119248.  https://doi.org/10.1371/journal.pone.0119248 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Saw JH et al (2015) Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philos Trans R Soc B 370:20140328.  https://doi.org/10.1098/rstb.2014.0328 CrossRefGoogle Scholar
  166. Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB (2014) Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol 6(10):a016048–a016048PubMedPubMedCentralCrossRefGoogle Scholar
  167. Scott J (1986) Ultrastructure of cell division in the unicellular red alga Flintiella sanguinaria. Can J Bot 64:516–524CrossRefGoogle Scholar
  168. Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nature 18:498–512Google Scholar
  169. Shaevitz JW, Gitai Z (2010) The structure and function of bacterial actin homologs. Cold Spring Harb Perspect Biol 2:a000364.  https://doi.org/10.1101/cshperspect.a000364 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Shih PM, Matzkeb NJ (2013) Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A 110:12355–12360PubMedPubMedCentralCrossRefGoogle Scholar
  171. Shih YL, Rothfield L (2006) The bacterial cytoskeleton. Microbiol Mol Biol Rev 70:729–754PubMedPubMedCentralCrossRefGoogle Scholar
  172. Shimada H, Yamagishi A (2011) Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50:4114–4120PubMedCrossRefGoogle Scholar
  173. Silar P (2016) Protistes eucaryotes: origine, evolution et biologie des microbes eucaryotes. https://hal.archives-ouvertes.fr/hal-01263138 Google Scholar
  174. Silflow CD, Lefebvre PA (2001) Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127:1500–1506PubMedPubMedCentralCrossRefGoogle Scholar
  175. Simpson AGB, Slamovits CH, Archibald JM (2017) Protist diversity and eukaryote phylogeny. In: Archibald JM et al (eds) Handbook of the protists. Springer International Publishing AG, Cham, pp 1–21Google Scholar
  176. Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T (2011) A revised classification of Naked Lobose Amoebae (Amoebozoa: Lobosa). Protist 162(4):545–570PubMedCrossRefGoogle Scholar
  177. Smith DR, Keeling PJ (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 112:10177–10184PubMedPubMedCentralCrossRefGoogle Scholar
  178. Spang A et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–184PubMedPubMedCentralCrossRefGoogle Scholar
  179. Speicher MR, Carter NG (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792PubMedCrossRefPubMedCentralGoogle Scholar
  180. Stairs CW, Leger MM, Roger AJ (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc 370:m20140326.  https://doi.org/10.1098/rstb.2014.0326 CrossRefGoogle Scholar
  181. Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297:89–91PubMedCrossRefPubMedCentralGoogle Scholar
  182. Stechmann A, Cavalier-Smith T (2003) The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666PubMedCrossRefGoogle Scholar
  183. Summons RE et al (2006) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B 361:951–968CrossRefGoogle Scholar
  184. Theriot JA (2013) Why are bacteria different from eukaryotes? BMC Biol 11:119. http://www.biomedcentral.com/1741-7007/11/119 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Toro E, Shapiro L (2010) Bacterial chromosome organization and segregation. Cold Spring Harb Perspect Biol 2:a000349.  https://doi.org/10.1101/cshperspect.a000349 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Valas RE, Bourne PE (2011) The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6:16.  https://doi.org/10.1186/1745-6150-6-16 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature 5:316–322Google Scholar
  188. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5:a011072.  https://doi.org/10.1101/cshperspect.a011072 CrossRefPubMedPubMedCentralGoogle Scholar
  189. van der Giezen M, Lenton TM (2012) The rise of oxygen and complex life. J Eukaryot Microbiol 59:111–113CrossRefGoogle Scholar
  190. Villanueva L, Schouten S, Sinninghe Damsté JS (2016) Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the ‘lipid divide’. Environ Microbiol 19:54–69PubMedCrossRefGoogle Scholar
  191. Vogel F et al (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247PubMedPubMedCentralCrossRefGoogle Scholar
  192. Waldbauer JR et al (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar
  193. Walker G, Dacks JB, Embley TM (2006) Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as “Mastigamoeba invertens”. J Eukaryot Microbiol 53:65–78PubMedCrossRefGoogle Scholar
  194. Wang Z, Wu M (2015) An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 5:7949.  https://doi.org/10.1038/srep07949 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Wegener Parfrey L et al (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533CrossRefGoogle Scholar
  196. Wernegreen JJ (2012) Endosymbiosis. Curr Biol 22:R555–R561.  https://doi.org/10.1016/j.cub.2012.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194:513–525PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714PubMedCrossRefGoogle Scholar
  199. Williams TA, Embley TM (2014) Archaeal “dark matter” and the origin of eukaryotes. Genome Biol Evol 6:474–481PubMedPubMedCentralCrossRefGoogle Scholar
  200. Williams TA, Embley TM (2015) Changing ideas about eukaryotic origins. Philos Trans R Soc B 370:20140318.  https://doi.org/10.1098/rstb.2014.0318 CrossRefGoogle Scholar
  201. Williams TA et al (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc R Soc B 279:4870–4879.  https://doi.org/10.1098/rspb.2012.1795 CrossRefPubMedGoogle Scholar
  202. Williams TA et al (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236PubMedCrossRefGoogle Scholar
  203. Williams TA et al (2017) Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci U S A 114:E4602–E4611.  https://doi.org/10.1073/pnas.1618463114 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Woese CR, Fox GE (1976) The phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090CrossRefGoogle Scholar
  205. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  206. Wolf YI et al (2012) Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol Direct 7:46. http://www.biology-direct.com/content/7/1/46 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Wu Z et al (2015) The massive mt-genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes. Proc Natl Acad Sci U S A 112:10185–10191PubMedPubMedCentralCrossRefGoogle Scholar
  208. Yubuki N, Leander BS (2013) Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J 75:230–244PubMedCrossRefGoogle Scholar
  209. Yutin N et al (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25:1619–1630PubMedPubMedCentralCrossRefGoogle Scholar
  210. Yutin N et al (2012) Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7:e36972.  https://doi.org/10.1371/journal.pone.0036972 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Zaremba-Niedzwiedzka K (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358PubMedCrossRefGoogle Scholar
  212. Zhu S, Zhu M, Knoll AH, Yin Z, Zhao F, Sun S, Qu Y, Shi M, Liu H (2016) Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nat Commun 7(1).  https://doi.org/10.1038/ncomms11500

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ligrone
    • 1
  1. 1.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations