Advertisement

The Origins

  • Roberto Ligrone
Chapter

Abstract

Primordial nucleosynthesis produced most of the hydrogen and helium present in our Universe. The other elements, including those essential for life on Earth, formed within the stars, spread in space and were incorporated into new solar systems. The Earth developed in the “habitable” zone of our system about 4.55 GYA, mostly by accretion of chondritic material. Gravitational separation of an iron/nickel core and a silicate-rich mantle generated the planetary engine that drives tectonic activity. Oxygen isotope analysis of ancient zircons suggests that tectonics started about 4.5 GYA; comparative analysis of zircons of different ages dates the start of modern plate tectonics to 2.9–2.5 GYA. Major outcomes of tectonic activity include (a) the formation of an atmosphere, an ocean and continental masses; (b) the activation of a planetary thermostat based on carbonate/silicate inter-conversion, essential to maintain the average temperature of the Earth surface in a range compatible with life; (c) the recycling of elements essential to life; (d) the maintenance of chemical disequilibria on the planetary surface, which created the conditions necessary for the development of life. The Earth was probably a habitable planet from about 4.4 GYA.

References

  1. Alles DL (2014 The evolution of the Universe. http://fire.biol.wwu.edu/trent/alles/Cosmic_Evolution.pdf
  2. Bell EA et al (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112:14518–14521PubMedPubMedCentralCrossRefGoogle Scholar
  3. Breecker DO, Sharp ZD, McFadde LD (2010) Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proc Natl Acad Sci U S A 107:576–580PubMedCrossRefGoogle Scholar
  4. Budzikiewicz H, Grigsby RD (2006) Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrom Rev 25:146–157PubMedCrossRefGoogle Scholar
  5. Campbell IH, Taylor SR (1983) No water, no granites – no granites, no continents. Geophys Res Lett 10:1061–1064CrossRefGoogle Scholar
  6. Cawood PA, Hawkesworth CJ (2019) Continental crustal volume, thickness and area, and their geodynamic implications. Gondwana Res 66:116–125CrossRefGoogle Scholar
  7. Feulner G, Hallmann C, Kienert H (2015) Snowball cooling after algal rise. Nat Geosci 8:659–662CrossRefGoogle Scholar
  8. Filippelli GM (2002) The global phosphorus cycle. Rev Mineral Geochem 48:391–425CrossRefGoogle Scholar
  9. Galloway JN et al (2004) Nitrogen cycles: past, present, and future generations. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  10. Griffin WL et al (2014) The world turns over: Hadean-Archean crust-mantle evolution. Lithos 189:2–15CrossRefGoogle Scholar
  11. Grosch EG, Hazen RM (2015) Microbes, mineral evolution, and the rise of microcontinents – origin and coevolution of life with early Earth. Astrobiology 15:922–939.  https://doi.org/10.1089/ast.2015.1302 PubMedCrossRefGoogle Scholar
  12. Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439CrossRefGoogle Scholar
  13. Hancock PL, Skinner BJ, Dineley DL (2000) The Oxford companion to the Earth. Oxford University Press, OxfordCrossRefGoogle Scholar
  14. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8(6):1127–1137PubMedCrossRefGoogle Scholar
  15. Harrison TM et al (2005) Heterogeneous Hadean hafnium: evidence of continental crust. Science 310:1947–1950PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hartmann WK (2014) The giant impact hypothesis: past, present (and future?). Phil Trans R Soc A 372:20130249PubMedCrossRefGoogle Scholar
  17. Hawkesworth CJ et al (2010) The generation and evolution of the continental crust. J Geol Soc 167:229–248CrossRefGoogle Scholar
  18. Hazen RM (2008) The emergence of chemical complexity: an introduction. In: Zaikowski L, Friedrich JM (eds) Chemical evolution across space & time, ACS symposium series, vol 981. American Chemical Society, Washington, DC, pp 2–13.  https://doi.org/10.1021/bk-2009-1025.ch001 CrossRefGoogle Scholar
  19. Hazen RM (2012) The story of the Hearth. The first 4.5 billion years from start dust to living planet. Viking, New YorkGoogle Scholar
  20. Kasting JF (2008) The primitive Earth. In: Wong JTF, Lazcano A (eds) Prebiotic evolution and astrobiology. Landes Bioscience, Austin. http://www3.geosc.psu.edu/~jfk4/PersonalPage/PDFs.htm Google Scholar
  21. Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc B 361:917–929CrossRefGoogle Scholar
  22. Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69CrossRefGoogle Scholar
  23. Lenton T, Watson A (2011) Revolutions that made the earth. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. Lineweaver CH, Chopra A (2012) The habitability of our Earth and other Earths: astrophysical, geochemical, geophysical, and biological limits on planet habitability. Annu Rev Earth Planet Sci 40:597–623CrossRefGoogle Scholar
  25. Lunine JI (2006) Physical conditions on the early Earth. Philos Trans R Soc B 361:1721–1731CrossRefGoogle Scholar
  26. Meissner R (2002) The little book of planet Earth. Copernicus Books, New YorkGoogle Scholar
  27. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Science 409:178–181Google Scholar
  28. Morbidelli A et al (2012) Building terrestrial planets. Annu Rev Earth Planet Sci 40:251–275CrossRefGoogle Scholar
  29. Rollinson H (2007) Early Earth systems. A geochemical approach. Blackwell Publishing, OxfordGoogle Scholar
  30. Rosing MT et al (2010) No climate paradox under the faint early Sun. Nature 464:744–747PubMedCrossRefGoogle Scholar
  31. Sheldon ND (2006) Precambrian paleosols and atmospheric CO2 levels. Precambrian Res 147:148–155CrossRefGoogle Scholar
  32. Sleep NH (2010) The Hadean-Archaean environment. Cold Spring Harb Perspect Biol 2:a002527.  https://doi.org/10.1101/cshperspect.a002527 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Sleep N, Zahnle KJ, Lupu RE (2014) Terrestrial aftermath of the Moon-forming impact. Phil Trans R Soc A 372:20130172PubMedCrossRefGoogle Scholar
  34. Solomon S et al (2007) Climate change 2007: the physical science basis. Cambridge University Press Cambridge., https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf. Accessed 22 June 2018
  35. Spier F (2010) Big history and the future of humanity. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  36. Stevenson DJ, Halliday AN (2014) The origin of the Moon. Phil Trans R Soc A 372:20140289PubMedCrossRefGoogle Scholar
  37. Vaclav S (2000) Energies: an illustrated guide to the biosphere and civilization. Mitt Press, Cambridge, MA. The MIT Press Website on Tectonics.: http://www.ucmp.berkeley.edu/geology/tectonics.html. Accessed 20 Mar 2018
  38. Whitman W (1900) Leaves of grass. David McKay, PhiladelphiaGoogle Scholar
  39. Wilde SA et al (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178PubMedCrossRefGoogle Scholar
  40. Zahnle K et al (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78CrossRefGoogle Scholar
  41. Zahnle K, Schaefer L, Fegley B (2010) Earth’s earliest atmospheres. Cold Spring Harb Perspect Biol 2:a004895PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ligrone
    • 1
  1. 1.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations