• Roberto Ligrone


After a brief introduction of the fundamental properties of life and of major paradigms of current evolutionary theory, this chapter presents the organization and main topics of the book. Box 1.1 introduces biological systematics in the historical context and illustrates the “molecular clock” approach.


  1. Adl SM et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adl SM et al (2018) Revisions to the nomenclature, classification and diversity of eukaryotes. J Eukaryot Microbiol.
  3. Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921. PubMedCrossRefGoogle Scholar
  4. Baulcombe DC, Dean C (2014) Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol 6:a019471. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Benton MJ (2000) Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead? Biol Rev 75:633–648PubMedCrossRefGoogle Scholar
  6. Carey N (2011) The epigenetics revolution. Ikon Books Ltd, LondonGoogle Scholar
  7. Carroll SB (2005) Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. W. W. Norton and Company, New YorkGoogle Scholar
  8. Cavalier-Smith T (2010) Deep phylogeny, ancestral groups and the four ages of life. Philos Trans R Soc B 365:111–132CrossRefGoogle Scholar
  9. Chopra A, Lineweaver CH (2008) The major elemental abundance differences between life, the oceans and the Sun. In: Proceedings from 8th Australian Space Science conference, pp 49–55Google Scholar
  10. Chopra A et al (2010) Palaeoecophylostoichiometrics. Searching for the elemental composition of the last universal common ancestor
  11. Christin P-A et al (2014) Molecular dating, evolutionary rates, and the age of the grasses. Syst Biol 63:153–165PubMedCrossRefGoogle Scholar
  12. Daubin V, Szöllősi GJ (2016) Horizontal gene transfer and the history of life. Cold Spring Harb Perspect Biol. PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  14. Dawkins R (1999) The extended phenotype: the long reach of the gene. Oxford University Press, OxfordGoogle Scholar
  15. Dawkins R (2004) Extended phenotype – but not too extended. A reply to Laland, Turner and Jablonka. Biol Philos 19:377–396CrossRefGoogle Scholar
  16. de Vargas C et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. PubMedCrossRefGoogle Scholar
  17. Donoghue PCJ, Yang Z (2016) The evolution of methods for establishing evolutionary timescales. Philos Trans R Soc B 371:20160020. CrossRefGoogle Scholar
  18. Douglas AE (2014) Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb Perspect Biol 6:a016113PubMedPubMedCentralCrossRefGoogle Scholar
  19. Flynn EG et al (2013) Developmental niche construction. Dev Sci 16:296–313PubMedCrossRefGoogle Scholar
  20. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. The inorganic chemistry of life. Oxford University Press, OxfordGoogle Scholar
  21. Galton DJ (2016) Commentary: Lamarckian inheritance and epigenetics: is there a connection? Int J Epidemiol 45:23–25PubMedCrossRefGoogle Scholar
  22. Gintis H (2011) Gene-culture coevolution and the nature of human sociality. Philos Trans R Soc B 366:878–888CrossRefGoogle Scholar
  23. Grafen A, Ridley M (eds) (2006) Richard Dawkins. How a scientist changed the way we think. Oxford University Press, OxfordGoogle Scholar
  24. Gray MW et al (2010) Irremediable complexity? Science 330:920–921PubMedCrossRefGoogle Scholar
  25. Haeckel E (1866) Generelle Morphologie der Organismen. Reimer, BerlinCrossRefGoogle Scholar
  26. Hagen JB (2012) Five kingdoms, more or less: Robert Whittaker and the broad classification of organisms. BioScience 62:67–74CrossRefGoogle Scholar
  27. Hazen RM (2012) The story of the Hearth. The first 4.5 billion years from start dust to living planet. Viking, New YorkGoogle Scholar
  28. Hebert PD et al (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321PubMedCrossRefGoogle Scholar
  29. Hickman CP et al (2007) Animal diversity. McGraw-Hill, New YorkGoogle Scholar
  30. Ioannidis S (2008) How development changes evolution: conceptual and historical issues in evolutionary developmental biology. Biol Philos 23:567–578CrossRefGoogle Scholar
  31. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356PubMedCrossRefGoogle Scholar
  32. Jortner J (2006) Conditions for the emergence of life on the early Earth: summary and reflections. Philos Trans R Soc B 361:1877–1891CrossRefGoogle Scholar
  33. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626CrossRefGoogle Scholar
  34. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136PubMedCrossRefGoogle Scholar
  35. Koonin EV, Wolf Y (2009) The fundamental units, processes and patterns of evolution, and the Tree of Life conundrum. Biol Direct 4:33. PubMedPubMedCentralCrossRefGoogle Scholar
  36. Koumandou VL et al (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 48:373–396PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kress WJ et al (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102:8369–8374PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kumar S (2005) Molecular clocks: four decades of evolution. Nature 6:654–662Google Scholar
  39. Kutschera U (2011) From the scala naturae to the symbiogenetic and dynamic tree of life. Biol Direct 6:33. PubMedPubMedCentralCrossRefGoogle Scholar
  40. Laland KN, Brown GR (2006) Niche construction, human behavior, and the adaptive-lag hypothesis. Evol Anthropol 15:95–104CrossRefGoogle Scholar
  41. Laland KN, O’Brien MJ (2011) Cultural niche construction: an introduction. Biol Theory. CrossRefGoogle Scholar
  42. Laland KN et al (2014) Does evolutionary theory need a rethink? Yes, urgently. Nature 514:161–164PubMedCrossRefGoogle Scholar
  43. Laland KN, Matthews B, Feldman MW (2016) An introduction to niche construction theory. Evol Ecol 30:191–202PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lineweaver CH, Chopra A (2012) What can life on Earth tell us about life in the Universe? In: Seckbach J (ed) Genesis – in the beginning. Cellular origin, life in extreme habitats and astrobiology, vol 22. Springer, Dordrecht, pp 799–815. Google Scholar
  45. Lukeš J et al (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537PubMedCrossRefGoogle Scholar
  46. Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci U S A 104:8597–8604PubMedPubMedCentralCrossRefGoogle Scholar
  47. Margulis L (1991) Symbiogenesis and symbionticism. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA, pp 1–14Google Scholar
  48. Matthews B et al (2014) Under niche construction: an operational bridge between ecology, evolution, and ecosystem science. Ecol Monogr 84:245–263CrossRefGoogle Scholar
  49. Maynard Smith J, Szathmáry (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  50. Monod J (1971) Chance and necessity: an essay on the natural philosophy of modern biology. Alfred A. Knopf, New YorkGoogle Scholar
  51. Moran NA, Sloan DB (2015) The hologenome concept: helpful or hollow? PLoS Biol 13:e1002311. PubMedPubMedCentralCrossRefGoogle Scholar
  52. Morris J (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105PubMedCrossRefGoogle Scholar
  53. Nitschke W, Russell MJ (2010) Just like the Universe, the emergence of life had high enthalpy and low entropy beginnings. J Cosmol 10:3200–3216Google Scholar
  54. O’Brien MJ, Laland KN (2012) Genes, culture, and agriculture an example of human niche construction. Curr Anthropol 53:434–468CrossRefGoogle Scholar
  55. Odling-Smee J, Laland K, Feldman M (2003) Niche construction. The neglected process in evolution. Princeton University Press, PrincetonGoogle Scholar
  56. Pace NR (2009) Mapping the Tree of Life: progress and prospects. Microbiol Mol Biol Rev 73:565–576PubMedPubMedCentralCrossRefGoogle Scholar
  57. Pawlowski J et al (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419PubMedPubMedCentralCrossRefGoogle Scholar
  58. Puigbò P, Wolf YI, Koonin EV (2013) Seeing the Tree of Life behind the phylogenetic forest. BMC Biol 11:46. PubMedPubMedCentralCrossRefGoogle Scholar
  59. Rendell L et al (2011) Runaway cultural niche construction. Philos Trans R Soc B 366:823–835CrossRefGoogle Scholar
  60. Ridley M (2004) Evolution. Blackwell Publishing, OxfordGoogle Scholar
  61. Rinke W et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437PubMedCrossRefGoogle Scholar
  62. Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. mBio 7:e01395–e01315. PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ruggiero MA et al (2015) A higher level classification of all living organisms. PLoS One 10(4):e0119248. PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274CrossRefGoogle Scholar
  65. Salvucci E (2016) Microbiome, holobiont and the net of life. Crit Rev Microbiol 42:485–494PubMedGoogle Scholar
  66. Sapp J (2005) The Prokaryote-Eukaryote dichotomy: meanings and mythology. Microbiol Mol Biol Rev 69:292–305PubMedPubMedCentralCrossRefGoogle Scholar
  67. Schuh RT, Brower AVZ (2009) Biological systematics: principles and applications. Cornell University Press, Ithaca. ISBN:978-0-8014-4799-0Google Scholar
  68. Schulz F et al (2017) Towards a balanced view of the bacterial tree of life. Microbiome 5:140. PubMedPubMedCentralCrossRefGoogle Scholar
  69. Scott-Phillips TC et al (2013) The niche construction perspective: a critical appraisal. Evolution 68:1231–1243CrossRefGoogle Scholar
  70. Spang A et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–184PubMedPubMedCentralCrossRefGoogle Scholar
  71. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090PubMedPubMedCentralCrossRefGoogle Scholar
  72. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  73. Wray JA (2015) Molecular clocks and the early evolution of metazoan nervous systems. Philos Trans R Soc B 370:20150046. CrossRefGoogle Scholar
  74. Wray GA et al (2014) Does evolutionary theory need a rethink? No, all is well. Nature 514:161–164PubMedCrossRefGoogle Scholar
  75. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ligrone
    • 1
  1. 1.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations