Betterment Proposal to Multipath Fading Channels Potential to MIMO Systems

  • Reinaldo PadilhaEmail author
  • Yuzo Iano
  • Ana Carolina Borges Monteiro
  • Rangel Arthur
  • Vânia Vieira Estrela
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 140)


The behavior of a system is studied through a simulation model. Once developed and validated, the simulation model can be used to investigate a wide variety of issues, as well as propose improvements. This research objective is to propose a novel simulation paradigm to improve the transmission of content in wireless telecommunication systems. The simulation environment employs a pre-coding process of bits based on the application of a technique relying on discrete events and signals before the modulation process. The signal transmission on the channel occurs in the discrete domain with the implementation of discrete entities in the process of bit generation applied at a low level of abstraction in a wireless telecommunication system. The simulation considered the advanced differential binary phase shift keying (DBPSK) as the modulation format for signal transmission in an AWGN channel, using different hardware platforms and in the studies. The results show improvements ranging from 9 to 35% in memory utilization, related to information compression, in the context of the research.


Multipath fading channels Discrete events Simulation Precoding DBPSK modulation IEEE 802.11 


  1. 1.
    Digital modulation in Communications Systems. An Introduction. Agilent Technologies (2001)Google Scholar
  2. 2.
    Padilha, R., Martins, B.I., Moschim, E.: Discrete event simulation and dynamical systems: a study of art. BTSym’16, Campinas, SP–Brasil, December (2016)Google Scholar
  3. 3.
    Pereira, F.T., Takano, A.M., Leal, F., Pinho, F.A.: Aplicação da Simulação a Eventos Discretos em um Ambiente Hospitalar Visando a Melhoria no Processo de Atendimento. XLVSBPO, Natal, RN–Brasil (2013)Google Scholar
  4. 4.
    Sharda, B., Bury, J.S.A.: Discrete event simulation model for reliability modeling of a chemical plant. In: Winter Simulation Conference (2008)Google Scholar
  5. 5.
    Hu, W., Sarjoughian, H.S.: Discrete-event simulation of network systems using distributed object computing. In: SPECTS’05 (2005)Google Scholar
  6. 6.
    Sasaki, N.K., Moschim, E.: Simulação de Sistemas de Comunicação Óptica Baseada em Simulação a Eventos Discretos. Universidade Estadual de Campinas. Campinas, SP–Brasil, July (2007)Google Scholar
  7. 7.
    Pissinelli, J.G., Risso, L.A., Picanco, S.R.A., Ignacio, A.S.P., Silva, L.A.: Modelo de Simulação de Eventos Discretos para Análise de Fluxo de Veículos. ENEGEP, Fortaleza, CE–Brasil (2015)Google Scholar
  8. 8.
    Rangel, J.J.A., Costa, J.V.S., Laurindo, Q.M.G., Peixoto, T.A., Matias, I.O.: Análise do fluxo de operações em um servidor de e-mail através de simulação a eventos discretos com o software livre Ururau. Produto & Produção 17(1), 1–12 (2016)CrossRefGoogle Scholar
  9. 9.
    Gomes, E.N., Fernandes, M.S.R., Campos, C.A.V., Viana, A.C.: Um Mecanismo de Remoção de Mensagens Obsoletas para as Redes Tolerantes a Atrasos e Interrupções. CSBC (2012)Google Scholar
  10. 10.
    Godoy, E.P., Lopes; W.C., Sousa, R.V., Porto, A.J.V.: Modelagem e Simulação de Redes de Comunicação Baseadas no Protocolo CAN - Controller Area Network. Revista SBA: Controle & Automação, vol. 21, no. 4 (2010)Google Scholar
  11. 11.
    Forrester, J.W.: Industrial dynamics—after the first decade. Manage. Sci. 14(7), 398–415(1968)CrossRefGoogle Scholar
  12. 12.
    Freeman, R.L.: Fundamentals of Telecommunications. Wiley, Hoboken (1999)Google Scholar
  13. 13.
    Freeman, R.L.: Telecommunication System Engineering, 4th edn. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  14. 14.
    Proakis, J.G.: Digital Communications, 5th edn. McGraw-Hill (2008)Google Scholar
  15. 15.
    Tozer, E.P.: Broadcast Engineer’s Reference Book. FOCAL PRESS (2012)Google Scholar
  16. 16.
    Whitaker, C.J.: Standard Handbook of Broadcast Engineering. McGraw-Hill (2005)Google Scholar
  17. 17.
    Couch II, L.W.: Digital and Analog Communication Systems, 8th. Prentice Hall (2013)Google Scholar
  18. 18.
    Freeman, R.L.: Fundamentals of Telecommunications. Wiley, Hoboken (1999)Google Scholar
  19. 19.
    Freeman, R.L.: Telecommunication System Engineering, 4th. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  20. 20.
    Proakis, J.G.: Digital Communications, 5th edn. McGraw-Hill (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical and Computer Engineering (FEEC)University of Campinas – UNICAMPCampinasBrazil
  2. 2.Department of TelecommunicationsFluminense Federal University (UFF)Rio de JaneiroBrazil

Personalised recommendations