Advertisement

An Efficient Algorithm Based Tabu Search for the Robust Sparse CARP Under Travel Costs Uncertainty

  • Sara Tfaili
  • Abdelkader SbihiEmail author
  • Adnan Yassine
  • Ibrahima Diarrassouba
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 966)

Abstract

We previously studied the capacitated arc routing problem over sparse underlying graphs under travel costs uncertainty. In this paper, we study the same problem by recalling the mathematical formulation of the problem given in [29]. The problem is characterized by the uncertainty of the travel costs and by the sparse network over which it is defined. In fact, a Multiple-Scenario Min-Max CARP over sparse underlying graphs is studied. More numerical instances applying the greedy heuristic algorithm developed in [29] and the adapted tabu-search algorithm are introduced in which these computational experiments show the effectiveness of these two algorithms.

Keywords

Robust CARP Travel costs uncertainty Robust optimization Scenarios 

References

  1. 1.
    Álvarez-Miranda, E., Ljubić, I., Toth, P.: Exact approaches for solving robust prize-collecting Steiner tree problems. Eur. J. Oper. Res. 229(3), 599–612 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)CrossRefGoogle Scholar
  3. 3.
    Bertsimas, D.: Probabilistic combinatorial optimization problems. Ph.D. thesis Massachusetts Institute of Technology, Dept. of Mathematics (1988)Google Scholar
  4. 4.
    Bertsimas, D.: A vehicle routing problem with stochastic demand. Oper. Res. 40(3), 574–585 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertsimas, D., Gamarnik, D., Rikun, A.A.: Performance analysis of queueing networks via robust optimization. Oper. Res. 59(2), 455–466 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98, 49–71 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov
  8. 8.
    Christiansen, C.H., Lysgaard, J.: A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. Lett. 35(6), 773–781 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Christiansen, C.H., Lysgaard, J., Wøhlk, S.: A branch-and-price algorithm for the capacitated arc routing problem with stochastic demands. Oper. Res. Lett. 37(6), 392–398 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Coco, A.A., Solano-Charris, E.L., Santos, A.C., Prins, C., Noronha, T.: Robust optimization criteria: state-of-the-art and new issuses. Technical report UTT-LOSI -14001. ISSN:2266–5064. Universit\(\acute{\text{e}}\) de Technologie de Troyes (2014)Google Scholar
  11. 11.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fleury, G., Lacomme, P., Prins, C.: Evolutionary algorithms for stochastic arc routing problems. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 501–512. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24653-4_51CrossRefGoogle Scholar
  13. 13.
    Han, J., Lee, C., Park, S.: A robust scenario approach for the vehicle routing problem with uncertain travel times. Transp. Sci. 48(3), 373–390 (2013)CrossRefGoogle Scholar
  14. 14.
    Kasperski, A., Zieliński, P.: On the approximability of robust spanning tree problems. Theoret. Comput. Sci. 412(4–5), 365–374 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kenyon, A.S., Morton, D.: Stochastic vehicle routing with random travel times. Transp. Sci. 37(1), 69–82 (2003)CrossRefGoogle Scholar
  16. 16.
    Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, Norwell (1997)CrossRefGoogle Scholar
  17. 17.
    Laporte, G., Louveaux, F., Mercure, H.: The vehicle routing problem with stochastic travel times. Transp. Sci. 26(3), 161–170 (1992)CrossRefGoogle Scholar
  18. 18.
    Laporte, G., Louveaux, F., Hamme, L.V.: An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50(3), 415–423 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mattia, S.: The robust network loading problem with dynamic routing. Comput. Optim. Appl. 54(3), 619–643 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mei, Y., Tang, K., Yao, X.: Capacitated arc routing problem in uncertain environments. In: IEEE World Congress on Computational Intelligence, pp. 1400–1407 (2010)Google Scholar
  21. 21.
    Monaci, M., Pferschy, U., Serafini, P.: Exact solution of the robust knapsack problem. Comput. Oper. Res. 40(11), 2625–2631 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sbihi, A.: A cooperative local serach-based algorithm for the multiple-scenario max-min knapsack problem. Eur. J. Oper. Res. 202(2), 339–346 (2010)CrossRefGoogle Scholar
  23. 23.
    Secomandi, N.: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Comput. Oper. Res. 27(11–12), 1201–1225 (2000)CrossRefGoogle Scholar
  24. 24.
    Secomandi, N., Margot, F.: Reoptimization approaches for the vehicle-routing problem with stochastic demands. Oper. Res. 57(1), 214–230 (2009)CrossRefGoogle Scholar
  25. 25.
    Shapiro, A., Dentcheva, S., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, vol. 9 (2008)Google Scholar
  26. 26.
    Solano Charris, E.L.: Optimization methods for the robust vehicle routing problem. In: Ph.D. thesis, Universit\(\acute{\text{ e }}\) de Technologie de Troyes (2015)Google Scholar
  27. 27.
    Sun, L.: A new robust optimization model for the vehicle routing problem with stochastic demands. J. Interdisc. Math. 17(3), 287–309 (2014)CrossRefGoogle Scholar
  28. 28.
    Sungur, I., Ordóñez, F., Dessouky, M.: A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty. IIE Trans. 40(5), 509–523 (2008)CrossRefGoogle Scholar
  29. 29.
    Tfaili, S., Sbihi, A., Yassine, A., Diarrassouba, I.: Capacitated arc routing problem over sparse underlying graph and under travel costs uncertainty. In: Proceedings of the 7th International Conference on Operations Research and Enterprise Systems: ICORES, vol. 1, pp. 144–151 (2018)Google Scholar
  30. 30.
    Toklu, N.E., Montemanni, R., Gambardella, L.M.: An ant colony system for the capacitated vehicle routing problem with uncertain travel costs. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 32–39 (2013)Google Scholar
  31. 31.
    Toklu, N.E., Montemanni, R., Gambardella, L.M.: A robust multiple ant colony system for the capacitated vehicle routing problem. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1871–1876 (2013)Google Scholar
  32. 32.
    Verweij, B., Shabbir, A., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic routing problems: a computational study. Comput. Optim. Appl. 24(2–3), 289–333 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Waters, C.: Vehicle-scheduling problems with uncertainty and omitted customer. J. Oper. Res. Soc. 4(12), 1099–1108 (1989)CrossRefGoogle Scholar
  34. 34.
    Wets, R.J.B.: Stochastic programming models: wait-and-see versus here-and-now. In: Greengard, C., Ruszczynski, A. (eds.) Decision Making Under Uncertainty. The IMA Volumes in Mathematics and its Applications, vol. 128, pp. 1–15. Springer, New York (2002).  https://doi.org/10.1007/978-1-4684-9256-9_1CrossRefGoogle Scholar
  35. 35.
    Mei, Y., Tang, K., Yao, X.: Capacitated arc routing problem in uncertain environments. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation, pp. 1400–1407 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sara Tfaili
    • 1
  • Abdelkader Sbihi
    • 1
    • 2
    Email author
  • Adnan Yassine
    • 1
    • 3
  • Ibrahima Diarrassouba
    • 1
  1. 1.Université Le Havre Normandie, LMAH, FR CNRS 3335, ISCNLe HavreFrance
  2. 2.École Supérieure de Logistique Industrielle - ESLI, GIP Campus E.S.P.R.I.T. IndustriesRedonFrance
  3. 3.Université Le Havre Normandie, ISELLe HavreFrance

Personalised recommendations