A Stochastic Production Frontier Analysis of the Brazilian Agriculture in the Presence of an Endogenous Covariate

  • Geraldo da Silva e SouzaEmail author
  • Eliane Gonçalves Gomes
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 966)


Production frontier analysis aims at the identification of best production practices and the importance of external factors, endogenous or not, that affect the production function and the technical efficiency component. In particular, in the context of the Brazilian agriculture, it is desirable for policy makers to identify the effect on production of variables related to market imperfections. Market imperfections occur when farmers are subjected to different market conditions depending on their income. In general, large scale farmers access lower input prices and may sell their production at lower prices, thereby making competition harder for small farmers. Market imperfections are typically associated with infrastructure, environment control requirements and the presence of technical assistance. In this article, at county level, and using agricultural census data, we estimate the elasticities of these variables on production by maximum likelihood methods. Technological inputs dominate the production response, followed by labor and land. Environment control has a positive net effect on production, as well as technical assistance. The indicator of infrastructure affects positively technical efficiency. There is no evidence of technical assistance endogeneity.


Stochastic frontier Endogeneity Agriculture 


  1. 1.
    Alves, E., Souza, G.S., Rocha, D.P.: Desigualdade nos campos sob a ótica do censo agropecuário 2006. Revista de Política Agrícola 22, 67–75 (2013)Google Scholar
  2. 2.
    Souza, G.S., Gomes, E.G., Alves, E.R.A., Magalhães, E., Rocha, D.P.: Um modelo de produção para a agricultura brasileira e a importância da pesquisa da Embrapa. In: Alves, E.R.A., Souza, G.S., Gomes, E.G. (eds.) Contribuição da Embrapa para o desenvolvimento da agricultura no Brasil, pp. 49–86. Embrapa, Brasília (2013)Google Scholar
  3. 3.
    Souza, G.S., Gomes, E.G.: The effect of marketing imperfection variables on production in the context of Brazilian agriculture. In: Proceedings of the 7th International Conference on Operations Research and Enterprise Systems (ICORES 2018), pp. 15–20, Scitepress, Setúbal (2018)Google Scholar
  4. 4.
    Alves, E., Souza, G.S.: Pequenos estabelecimentos em termos de área também enriquecem? Pedras e tropeços. Revista de Política Agrícola 24, 7–21 (2015)Google Scholar
  5. 5.
    Souza, G.S., Gomes, E.G., Alves, E.R.A.: Conditional FDH efficiency to assess performance factors for Brazilian agriculture. Pesquisa Operacional 37, 93–106 (2017)CrossRefGoogle Scholar
  6. 6.
    Karakaplan, M.U., Kutlu, L.: Handling endogeneity in stochastic frontier analysis (2013). Accessed 10 Mar 2017
  7. 7.
    Karakaplan, M.U.: Fitting endogenous stochastic frontier models in Stata. Stata J. 17(1), 39–55 (2017)CrossRefGoogle Scholar
  8. 8.
    Murphy, K.M., Topel, R.H.: Estimation and inference in two step econometric models. J. Bus. Econ. Stat. 3, 370–379 (1985)Google Scholar
  9. 9.
    Papke, L.E., Wooldridge, J.M.: Econometric methods goes fractional response variables with an application to 401(k) plan participation rates. J. Appl. Econ. 11(6), 619–632 (1996)CrossRefGoogle Scholar
  10. 10.
    Ramalho, E.A., Ramalho, J.J.S., Henriques, P.D.: Fractional regression models for second stage DEA efficiency analyses. J. Prod. Anal. 34, 239–255 (2010)CrossRefGoogle Scholar
  11. 11.
    IBGE Homepage. Censo Agropecuário (2006). Accessed 24 Jan 2012
  12. 12.
    IBGE Homepage. Censo Demográfico (2010). Accessed 24 Jan 2012
  13. 13.
    INEP Homepage. Nota Técnica do Índice de Desenvolvimento da Educação Básica (2012) Accessed 24 Jan 2012
  14. 14.
    Ministério da Saúde Homepage. IDSUS – Índice de Desempenho do SUS (2011). Accessed 02 Mar 2012
  15. 15.
    Amsler, C., Prokhorov, A., Schmidt, P.: Endogeneity in stochastic frontier models. J. Econometrics 190, 280–288 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Greene, W.H.: Econometric Analysis, 6th edn. Prentice Hall, Englewood Cliffs (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Geraldo da Silva e Souza
    • 1
    Email author
  • Eliane Gonçalves Gomes
    • 1
  1. 1.Secretaria de Inteligência e Relações Estratégicas – EmbrapaBrasíliaBrazil

Personalised recommendations