Psychomotor Intervention Using Biofeedback Technology for the Elderly with Chronic Obstructive Pulmonary Disease

  • Maria Santos
  • Rafaela Moreira
  • Ricardo SaldanhaEmail author
  • Salomé Palmeiro
  • César Fonseca
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1016)


When we talk about aging we must take into account not only chronological age, but also a complex and dynamic process of biological, psychological and social changes. Chronic Obstructive Pulmonary Disease (COPD) is highlighted in this study, as it is one of the most common and one of the leading causes of worldwide mortality in the elderly. Thus, the importance of psychomotricity in this case, since it acts on the awareness and regulation of the physiological and psychological systems, facilitating the learning process (according to the principles of learning theory and cognitive behavioral). In addition, it is also proposed the use of support technology based on the therapeutic strategies of the biofeedback system. Therefore, through the application of the goals proposed by the psychomotricity and use of the technology associated with biofeedback, the individual with COPD becomes capable of controlling the symptoms associated with the disease, and consequently acquiring more autonomy in the daily life (essential to promote their quality of life).


Elderly Chronic Obstructive Pulmonary Disease Psychomotricity Respiratory disturbances Biofeedback 


  1. Costa, A.M.P.: Analysis of pulmonary airflow on a smartphone application (2016)Google Scholar
  2. DGS (Direcção Geral de Saúde): Programa Nacional de Prevenção e Controlo da Doença Pulmonar Obstrutiva Crónica. Lisboa: DGS (2005). acedido em 2018. Journal 2(5), 99–110 (2016)
  3. Fonseca, V., Martins, R.F.R.: Progressos em psicomotricidade (2001)Google Scholar
  4. Kawagoshi, A., et al.: Effects of low-intensity exercise and home-based pulmonary rehabilitation with pedometer feedback on physical activity in elderly patients with chronic obstructive pulmonary disease. Respir. Med. 109(3), 364–371 (2015)CrossRefGoogle Scholar
  5. Matos, M.L.P.D.: Efeito de dois programas de reabilitação psicomotora (atividade contínua versus atividade intervalada) na capacidade neuromotora de idosos institucionalizados. Master’s thesis, Universidade de Évora (2016)Google Scholar
  6. McCarthy, B., Casey, D., Devane, D., Murphy, K., Murphy, E., Lacasse, Y.: Pulmonary rehabilitation for chronic obstructive pulmonary disease. The Cochrane Library (2015)Google Scholar
  7. Neto, A.R.N.: Biofeedback em terapia cognitivo-comportamental. Arq. Méd. Hosp. Fac. Ciênc. Méd. Santa Casa São Paulo 55(3), 127–132 (2018)Google Scholar
  8. Phipps, W.J.: Enfermagem Médico-Cirúrgica, Conceitos e Prática Clínica, 6ª Edição. Lusodidacta (Livro) (2004)Google Scholar
  9. Rissardi, G.G., Godoy, M.F.: Estudo da aplicação da técnica de relaxamento muscular progressivo de Jacobson modificada nas respostas das variáveis cardiovasculares e respiratórias de clientes hansenianos. Arq. Ciênc. Saúde 14(3), 175–180 (2004)Google Scholar
  10. Ruivo, S., Viana, P., Martins, C., Baeta, C.: Efeito do envelhecimento cronológico na função pulmonar. Comparação da função respiratória entre adultos e idosos saudáveis. Rev. Port. Pneumol. 15(4), 629–653 (2009)CrossRefGoogle Scholar
  11. Schwartz, M.S., Andrasik, F.: Biofeedback: A practitioner’s guide. Guilford Publications (2017)Google Scholar
  12. Spruit, M.A., Pitta, F., McAuley, E., ZuWallack, R.L., Nici, L.: Pulmonary rehabilitation and physical activity in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 192(8), 924–933 (2015)CrossRefGoogle Scholar
  13. Bongaarts, J.: United Nations, Department of Economic and Social Affairs, Population Division, Sex Differentials in Childhood Mortality. Popul. Dev. Rev. 40(2), 380 (2014)CrossRefGoogle Scholar
  14. Burke, D., Gorman, E., Stokes, D., Lennon, O.: An evaluation of neuromuscular electrical stimulation in critical care using the ICF framework: a systematic review and meta-analysis. Clin. Respir. J. (2014)Google Scholar
  15. Direcção-Geral da Saúde (DGS) Translation of: World Health Organization (resolution WHA54.21). International classification of functioning, disability and health (2004)Google Scholar
  16. European Commission (EC): Population, Key figures on Europe – 2014 edn. Publications Office of the European Union, Luxembourg (2014). ISSN 2315-201XGoogle Scholar
  17. Florin, J., Ehrenberg, A., Ehnfors, M., Björvell, C.: A comparison between the VIPS model and the ICF for expressing nursing content in the health care record. Int. J. Med. Inform. 82(2), 108–117 (2013)CrossRefGoogle Scholar
  18. José Lopes, M., et al.: Evaluation of elderly persons’ functionality and care needs. Rev. Lat. Am. Enferm. (RLAE) 21, 52–60 (2013)CrossRefGoogle Scholar
  19. Maric, M., de Haan, E., Hogendoorn, S.M., Wolters, L.H., Huizenga, H.M.: Evaluating statistical and clinical significance of intervention effects in single-case experimental designs: an SPSS method to analyse univariate data. Behav. Therapy 46(2), 230–241 (2015)CrossRefGoogle Scholar
  20. Marôco, J.: Análise Estatística com Utilisação do SPSS [Statistical Analysis using SPSS], 6th edn. Edições Silabo, p. 990 (2014). ISBN: 9789899676343Google Scholar
  21. Meskell, P., Murphy, K., Shaw, D.G., Casey, D.: Insights into the use and complexities of the Policy Delphi technique. Nurse Res. 21(3), 32–39 (2014)CrossRefGoogle Scholar
  22. Orem, D.E.: Nursing: Concepts of Practice, 6th edn. Mosby, St. Louis (2001)Google Scholar
  23. Pereira, C., Fonseca, C., Escoval, A., Lopes, M.: Contributo para a classificação da funcionalidade na população com mais de 65 anos, segundo a classificação internacional de funcionalidade. Rev. Port. Saúde Pública 19(1), 52–62 (2011)Google Scholar
  24. Shen, P., Chen, C.: The WHO’s international classification of functioning, disability, and health (ICF): essential knowledge for nurses. Hu Li Za Zhi J. Nurs. 59(6), 92–97 (2012)Google Scholar
  25. Sidani, S.: Effects of patient-centered care on patient outcomes: an evaluation. Res. Theory Nurs. Pract. 22(1), 24–37 (2008)CrossRefGoogle Scholar
  26. So, H., Kim, H., Ju, K.: Prediction model of quality of life in elderly based on ICF model. J. Korean Acad. Nurs. 41(4), 481–490 (2011)CrossRefGoogle Scholar
  27. The United Nations 2012 Population Projections. (UN) Population & Development Review 39(3), 551–555 (2013)Google Scholar
  28. World Bank (WB): The World Bank Annual Report 2014: Year in Review, p. 67 (2014)Google Scholar
  29. Zhu, H.: Correctly selection methods of building up a model function of known categories in SPSS 16.0. J. Cap. Inst. Phys. Educ. 26(1), 91–96 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Évora UniversityÉvoraPortugal
  2. 2.Évora University, Investigator POCTEP 0445_4IE_4_PÉvoraPortugal

Personalised recommendations