Early Life from the Proterozoic Sedimentary Basins of India

  • Supriyo Kumar Das
  • Neal GuptaEmail author
Part of the Springer Geology book series (SPRINGERGEOL)


The documented history of research on Proterozoic evidence of life in India is almost 200 years old. Although systematic study did not start before the middle of twentieth century, significant advancement has taken place in recent years in the application of sophisticated techniques involving stable isotopes and organic geochemical methods. The last two decades have revealed application of biomarker principles with greater analytical rigor that challenge the first evidence of eukaryotes via conventional paleontological means. Such research also underpins timing of oxygenation of the atmosphere, developing chemical profiles for reconstructing deep time biology providing means for applying such methods alongside traditional micropaleontology as established protocols. Further research, particularly related to biostratigraphy, chemostratigraphy and geochronology, helps in understanding the Proterozoic record of life in India with greater resolution. This chapter reviews the earliest fossil records in India with an emphasis on the Mesoproterozoic, Neoproterozoic and Ediacaran Period.


Biomarkers Biogeochemistry Fossil record Ediacara Stratigraphy 



The UGC is acknowledged for offering a position to Supriyo Kumar Das under FRP. Dr. Gupta acknowledges Prof. S. K. Tandon for editorial support and review and Springer for agreeing to publish the volume. Springer and Mr. Aaron Schiller are thanked for reuse of figures from papers originally published by Springer (Sharma et al. 2012; Sharma and Shukla 2009a, b) for reuse in this chapter.


  1. Ahmad S, Kumar S (2014) Trace fossil assemblages from the Nagaur Group, Western India. J Palaeontol Soc India 59:231–246Google Scholar
  2. Auden JB (1933) Vindhyan sedimentation in Son Valley, Mirzapur district. Mem Geol Sur India 62:141–250Google Scholar
  3. Azmi RJ, Joshi D, Tiwari BN, Joshi MN, Srivastava SS (2008) A synoptic view on the current discordant geo- and biochronological ages of the Vindhyan Supergroup, central India. Himal Geol 29:177–191Google Scholar
  4. Banerjee S, Jeevankumar S (2005) Microbially originated wrinkle structures on sandstone and their stratigraphic context: Palaeoproterozoic Koldaha Shale, central India. Sediment Geol 176:211–224CrossRefGoogle Scholar
  5. Banerjee S, Dutta S, Paikaray S, Mann U (2006) Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). J Earth Syst Sci 115:37–48CrossRefGoogle Scholar
  6. Banerjee S, Sarkar S, Eriksson PG, Samanta P (2010) Microbially related structures in siliciclastic sediment resembling Ediacaran fossils: examples from India, ancient and modern. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Springer-Verlag, Berlin, pp 111–129Google Scholar
  7. Banerjee S (2012) Discoidal microbial colonies. Int J Earth Sci 101:1343CrossRefGoogle Scholar
  8. Basu A, Bickford ME (2014) Contributions of zircon U-Pb geochronology to understanding the volcanic and sedimentary history of some Purana basins, India. J Asian Earth Sci 91:252–262CrossRefGoogle Scholar
  9. Bengtson S, Sallstedt T, Belivanova V, Whitehouse M (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol 15:e2000735CrossRefGoogle Scholar
  10. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036CrossRefGoogle Scholar
  11. Brocks JJ, Buick R, Summons RE, Logan GA (2003) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4321–4335CrossRefGoogle Scholar
  12. Chakraborty PP, Das P, Saha S, Das K, Mishra SR, Paul P (2012) Microbial mat related structures (MRS) from Mesoproterozoic Chhattisgarh and Khariar basins, Central India and their bearing on shallow marine sedimentation. Episodes 35:1–11CrossRefGoogle Scholar
  13. Chakraborty PP, Das P (2013) Microbial mat related structures (MRS) from Mesoproterozoic Chhattisgarh and Khariar basins, Central India and their bearing on shallow marine sedimentation. Episodes 35:513–523CrossRefGoogle Scholar
  14. Dayal A, Mani D, Madhavi T, Kavitha S, Kalpana M, Patil D, Sharma M (2014) Organic geochemistry of the Vindhyan sediments: implications for hydrocarbons. J Asian Earth Sci 91:329–338CrossRefGoogle Scholar
  15. De C (2006) Ediacaran fossil assemblage in the Upper Vindhyans of Central India and its significance. J Asian Earth Sci 27:660–683CrossRefGoogle Scholar
  16. Deb SP, Scheiber J, Chaudhuri AK (2007) Microbial mat features in mudstones of the Mesoproterozoic Somanapalli Group, Pranhita Godavari basin, India. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Catuneanu O, Altermann W (eds) An atlas of microbial mat features preserved within the clastic rock record. Elsevier, Boston, pp 171–180Google Scholar
  17. Erwin DH (2015) Early Metazoan life: divergence, environment and ecology. Philos Trans R Soc B 370:20150036CrossRefGoogle Scholar
  18. Evitt WR (1963) A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. PNAS 49:298–302CrossRefGoogle Scholar
  19. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA, Hoshino Y, Peters CA, George SC, Love GD, Brocks JJ, Buick R, Summons RE (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:5915–5920CrossRefGoogle Scholar
  20. Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrash D, Konhauser KO (2011) Possible evolution of mobile animals in association with microbial mats. Nature Geoscience Letters 4:372–375CrossRefGoogle Scholar
  21. Guhey R, Sinha D, Tewari VC (2011) Meso-Neoproterozoic stromatolites from the Indravati and Chhattisgarh basins, Central India. In: Tewari VC, Seckbach J (eds) Stromatolites: interaction of microbes with sediments. Springer, Berlin, pp 23–42Google Scholar
  22. Hoshino Y, Poshibaeva A, Meredith W, Snape C, Poshibaev V, Versteegh GJM, Kuznetsov N, Leider A, van Maldegem L, Neumann M, Naeher S, Moczydłowska M, Brocks JJ, Tang Q, Xiao S, McKirdy D, Das SK, Alvaro JJ, Sansjofre P, Hallmann C (2017) Cryogenian evolution of stigmasteroid biosynthesis. Sci Adv 3(9):1–7CrossRefGoogle Scholar
  23. Hofmann HJ, Schopf JW (1983) In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, pp 321–360Google Scholar
  24. Hofmann HJ, Mountjoy EW (2001) Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada’s oldest shelly fossils. Geology 29:1091–1094CrossRefGoogle Scholar
  25. Javaux E, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94CrossRefGoogle Scholar
  26. Jodder J, Hofmann A (2016) Carbonaceous cherts of the Daitari Greenstone Belt, Singhbhum Craton, India: a well preserved record of early life. Abstract, 35th Inter. Geol. Cong. 27th Aug to 4th Sept. 2016, Cape Town, South AfricaGoogle Scholar
  27. Jones HC (1909) In general report. Records Geol Sur India 3:66Google Scholar
  28. King W (1872) The Kadapah and Karnul formations in the Madras Presidency. Mem Geol Sur India 8:124–258Google Scholar
  29. Kirschvink JL, Kopp RE (2008) Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos Trans R Soc Lond Ser B Biol Sci 208:2755–2765CrossRefGoogle Scholar
  30. Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137CrossRefGoogle Scholar
  31. Knoll AH (2000) Learning to tell Neoproterozoic time. Precambrian Geology 100:3–20CrossRefGoogle Scholar
  32. Knoll AH, Walter MR, Narbonne GM, Christie-Blick N (2004) A new period for the geologic time scale. Science 305:621–622CrossRefGoogle Scholar
  33. Kumar S (1995) Megafossils from the Mesoproterozoic Rohtas formation (the Vindhyan Supergroup), Katni area, Central India. Precambrian Res 72:171–184CrossRefGoogle Scholar
  34. Kumar S, Sharma M (2012) Vindhyan Basin, Son Valley Area, Central India: PSI field guide-4. Palaeontol Soc India:145Google Scholar
  35. Loon van AJ, Mazumder R (2013) First find of biogenic activity in the Palaeoproterozoic of the Singhbhum Craton (E India). Andean Geol 19:185–192CrossRefGoogle Scholar
  36. Mathur VK (2008) Ediacaran multicellular biota from Krol Group, Lesser Himalaya and its stratigraphic significance—a review. Palaeobotanist 57:53–61Google Scholar
  37. Maithy PK, Kumar G (2007) Biota in the terminal Proterozoic successions on the Indian subcontinent: a review. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran Biota, Geol. Soc London, Special Publication, vol 286, pp 315–330Google Scholar
  38. Mani D, Patil DJ, Dayal AM, Kavitha S, Hafiz M, Hakhoo N, Bhat GM (2014) Gas potential of Proterozoic and Phanerozoic shales from the NW Himalaya, India: inferences from pyrolysis. Int J Coal Geol 128–129:81–95CrossRefGoogle Scholar
  39. Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA, Kirschvink JL (2000) Age of bilaterian body and trace fossils, White Sea Russia: implications for metazoan evolution. Science 288:841–845CrossRefGoogle Scholar
  40. McClelland J (1834) Notice of some fossil impressions occurring in the transitional Limestone of Kumaun. J Asiatic Soc Bengal 3:628–631Google Scholar
  41. Meert JG, Gibsher AS, Levashova NM, Grice WC, Kamenov GD, Ryabinin AB (2011) Glaciation and ~770 Ma Ediacara (?) Fossils from the Lesser Karatau Microcontinent, Kazakhstan. Gondwana Res 19:867–880CrossRefGoogle Scholar
  42. Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33:421–442CrossRefGoogle Scholar
  43. Pandey SK (2014) Thrombolites from the Neoproterozoic Bhander Group, Vindhyan Supergroup, Central India. In: Rocha R, Pais J, Kullberg J, Finney S (eds) STRATI 2013. Springer Geology. Springer, ChamGoogle Scholar
  44. Patranabis-Deb S, Słowakiewicz M, Tucker ME, Pancost RD, Bhattacharya P (2016) Carbonate rocks and related facies with vestiges of biomarkers: clues to redox conditions in the Mesoproterozoic ocean. Gondwana Res 35:411–424CrossRefGoogle Scholar
  45. Prasad B, Asher R (2001) Biostratigraphy and lithostratigraphic classification of Proterozoic and Lower Paleozoic sediments (Preunconformity sequence) of Ganga Basin, India. Paleontographica Indica 5:1–155Google Scholar
  46. Prasad B, Uniyal SN, Asher R (2005) Organic walled microfossils from the Proterozoic Vindhyan sediments of Son Valley, Madhya Pradesh, India. Palaeobotanist 54:13–60Google Scholar
  47. Prasad B, Asher R, Borgohai B (2010) Late Neoproterozoic (Ediacaran)-Early Paleozoic (Cambrian) acritarchs from the Marwar Supergroup, Bikaner-Nagaur Basin, Rajasthan. J Geol Society of India 75:415–431CrossRefGoogle Scholar
  48. Prasad B, Asher R (2016) Record of Ediacaran complex acanthomorphic acritarchs from the Lower Vindhyan succession of the Chambal Valley (east Rajasthan), India and their biostratigraphic significance. J Palaeontol Soc India 61:29–62Google Scholar
  49. Prasanna MV, Rasheed MA, Patil DJ, Dayal AM, Reddy BR (2013) Geo-microbiological studies in conjunction with different geo-scientific studies for the evaluation of hydrocarbon prospects in Proterozoic Vindhyan Basin, India. J Pet Sci Eng 108:239–249CrossRefGoogle Scholar
  50. Raha PK, Shastry MVA (1982) Stromatolites and Precambrian stratigraphy in India. Precambrian Res 18:298–318CrossRefGoogle Scholar
  51. Raju S, Mathur N, Sarmah M (2014) Geochemical characterization of Neoproterozoic heavy oil from Rajasthan India implications for future exploration of hydrocarbons. Curr Sci 107:1298–1305Google Scholar
  52. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104CrossRefGoogle Scholar
  53. Ray JS, Veizer J, Davis WJ (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Res 121:103–140CrossRefGoogle Scholar
  54. Ray JS (2006) Age of the Vindhyan Supergroup: a review of recent findings. J Earth Syst Sci 115:149–160CrossRefGoogle Scholar
  55. Reysenbach AL, Cady SL (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9:79–86CrossRefGoogle Scholar
  56. Samanta P, Mukhopadhyay S, Mandal A, Sarkar S (2011) Microbial Mat structures in profile: the Neoproterozoic Sonia Sandstone, Rajasthan, India. J Asian Earth Sci 40:542–549CrossRefGoogle Scholar
  57. Samanta P, Mukhopadhyay S, Sarkar S, Eriksson PG (2015) Neoproterozoic substrate condition vis-à-vis microbial mat structure and its implications: Sonia Sandstone, Rajasthan, India. J Asian Earth Sci 106:186–196CrossRefGoogle Scholar
  58. Sarangi S, Gopalan K, Kumar S (2004) Pb–Pb age of earliest megascopic eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res 132:107–121CrossRefGoogle Scholar
  59. Sarkar S, Bose PK, Samanta P, Sengupta P, Eriksson PG (2008) Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Res 162:248–263CrossRefGoogle Scholar
  60. Sarkar S, Banerjee S, Samanta P, Jeevankumar S (2006) Microbial mat-induced sedimentary structures and their implications: examples from Chorhat Sandstone, M.P., India. J Earth Syst Sci 115:49–60CrossRefGoogle Scholar
  61. Sarkar S, Samanta P, Altermann W (2011) Setulfs, modern and ancient: formative mechanism, preservation bias and Palaeoenvironmental implications. Sediment Geol 238:71–78CrossRefGoogle Scholar
  62. Sarkar S, Banerjee S, Samanta P, Chakraborty N, Chakraborty PP, Mukhopadhyay S, Singh AK (2014) Microbial mat records in siliciclastic rocks: examples from four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. J Asian Earth Sci 91:362–377CrossRefGoogle Scholar
  63. Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) (2007) Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam. 311 pGoogle Scholar
  64. Schopf JW (1992) In: Schopf JW, Klien C (eds) The Proterozoic Biosphere: a multidisciplinary study. Cambridge University Press, Cambridge. 1348 pCrossRefGoogle Scholar
  65. Schopf JW (1999) Cradle of life. The discovery of Earth’s earliest fossils. Princeton University Press, Princeton, NJ, p 367Google Scholar
  66. Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:80–83CrossRefGoogle Scholar
  67. Sharma M (2006a) Small-sized Akinetes from the Mesoproterozoic Salkhan Limestone, Semri Group, Bihar, India. J Palaeontological Soc India 51:109–118Google Scholar
  68. Sharma M (2006b) Late Palaeoproterozoic (Statherian) carbonaceous films from the Olive Shale (Koldaha Shale), Semri Group, Vindhyan Supergroup, India. J Palaeontological Soc India 51:27–35Google Scholar
  69. Sharma M (2008) Neoproterozoic biotic signatures in the Peninsular Indian Basins—an overview. Mem Geol Soc India 74:119–131Google Scholar
  70. Sharma M, Shukla Y (2009a) The evolution and distribution of life in the Precambrian Eon-Global perspective and the Indian record. J Biosci 34:765–776CrossRefGoogle Scholar
  71. Sharma M, Shukla Y (2009b) Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambrian Res 173:105–122CrossRefGoogle Scholar
  72. Sharma M, Shukla Y (2012a) Megascopic Carbonaceous compression fossils from the Neoproterozoic Bhima basin, Karnataka, South India. Geol Soc Lond, Spec Publ 366:277–293CrossRefGoogle Scholar
  73. Sharma M, Shukla Y (2012b) Occurrence of helically coiled microfossil Obruchevella in the Owk Shale of the Kurnool Group and its significance. J Earth Syst Sci 121:755–768CrossRefGoogle Scholar
  74. Sharma M, Mishra S, Dutta S, Banerjee S, Shukla Y (2009) On the affinity of Chuaria–Tawuia complex: a multidisciplinary study. Precambrian Res 173:123–136CrossRefGoogle Scholar
  75. Sharma M, Tiwari M, Ahmad S, Shukla R, Shukla B, Singh VK, Pandey SK, Ansari AH, Shukla Y, Kumar S (2016) Palaeobiology of Indian proterozoic and early cambrian successions—recent developments. Proc Indian Natl Sci Acad 82:559–579Google Scholar
  76. Sharma M, Kumar S, Tiwari M, Shukla Y, Pandey SK, Srivastava P, Banerjee S (2012) Palaeobiological constraints and the Precambrian biosphere: Indian evidence. Proc Indian Natl Sci Acad 78:407–422Google Scholar
  77. Shen Y, Schidlowski M (2000) New C isotope Stratigraphy from southwest China: implications for the placement of the Precambrian–Cambrian boundary on the Yangtze platform and global correlations. Geology 28:623–626CrossRefGoogle Scholar
  78. Shu D, Isozaki Y, Zhang X, Han J, Maruyama S (2014) Birth and early evolution of metazoans. Gondwana Res 25:884–895CrossRefGoogle Scholar
  79. Shukla R, Tiwari M (2014) Ediacaran acanthomorphic acritarchs from the Outer Krol Belt, Lesser Himalaya, India: their significance for global correlation. Palaeoworld 23:209–224CrossRefGoogle Scholar
  80. Singh VK, Sharma M (2014) Morphologically Complex Organic-Walled Microfossils (OWM) from the Late Palaeoproterozoic—Early Mesoproterozoic Chitrakut Formation, Vindhyan Supergroup, Central India and their implications on the antiquity of eukaryotes. J Palaeontol Soc India 59:89–102Google Scholar
  81. Srivastava P (2002) Carbonaceous megafossils from the Dholpura Shale, uppermost Vindhyan Supergroup, Rajasthan: an age implication. J Paleontol Soc India 47:97–103Google Scholar
  82. Srivastava P, Bali R (2006) Proterozoic carbonaceous remains from the Chorhat Sandstone: oldest fossils of the Vindhyan Supergroup, Central India. Geobios 39:873–878CrossRefGoogle Scholar
  83. Srivastava P (2006) Meso–Neoproterozoic coated grains and palaeoecology of associated microfossils: the Deoban Limestone, Lesser Himalaya, India. Palaeogeogr Palaeoclimatol Palaeoecol 239:241–252CrossRefGoogle Scholar
  84. Srivastava P (2009) Trachyhystrichosphaera, an age marker acanthomorph from the Bhander Group, Upper Vindhyans, Rajasthan. J Earth Syst Sci 118:575–582CrossRefGoogle Scholar
  85. Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006) Steroids, triterpenoids and molecular oxygen. Philosophical Trans Royal Soc B 361:951–968CrossRefGoogle Scholar
  86. Sur S, Schieber S, Banerjee S (2006) Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale, Vindhyan basin, India. J Earth Syst Sci 115:61–66CrossRefGoogle Scholar
  87. Tappan H (1980) The Palaeobiology of plant protists. WH Freeman and Company, San Fransisco. 1028 pGoogle Scholar
  88. Tewari VC (2003) Sedimentology, palaeobiology and stable isotope chemostratigraphy of the Terminal Neoproterozoic Buxa Dolomite, Arunachal Pradesh NE Lesser Himalaya. Himal Geol 24:1–18Google Scholar
  89. Tiwari VC, Sial AN (2007) Neoproterozoic–Early Cambrian isotopic variation and chemostratigraphy of the Lesser Himalaya, India, Eastern Gondwana. Chem Geol 237:64–88CrossRefGoogle Scholar
  90. Tiwari M, Pant I (2009) Microfossils from the Neoproterozoic Gangolihat Formation, Kumaun Lesser Himalaya; their stratigraphic and evolutionary significance. J Asian Earth Sci 35:137–149CrossRefGoogle Scholar
  91. Tyler SA, Barghoorn ES (1954) Occurrence of structurally preserved plants in Precambrian rocks of the Canadian shield. Science 119:606–608CrossRefGoogle Scholar
  92. Viswanathiah MN, Venkatachalapathy V (1980) Microbiota from the Bababudan iron formation, Karnataka. J Geol Soc India 21:16–20Google Scholar
  93. Waggoner B (2003) The Ediacaran biotas in space and time. Integr Comp Biol 43:104–113CrossRefGoogle Scholar
  94. Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeologyPresidency UniversityKolkataIndia
  2. 2.Petroleum Engineering-Business Management Dual Degree ProgramUniversity of WyomingLaramieUSA

Personalised recommendations