Proterozoic Sedimentary Basins of India

  • Partha Pratim Chakraborty
  • S. K. Tandon
  • Sagnik Basu Roy
  • Subhojit Saha
  • Pritam P. Paul
Part of the Springer Geology book series (SPRINGERGEOL)


Indian Proterozoic geology includes a group of less disturbed and unmetamorphosed platformal sediment packages hosted within cratonic nucleii of Peninsular India and offers scope to study profound and irreversible changes in the atmosphere, hydrosphere and biosphere during the early history of the planet. Studies in these basin fills in the last two decades have resulted in significant advancements with respect to initiation and evolution of the basins in different tectonic settings, relationship with accretion and breakup of the supercontinents, paleoclimate and paleo-weathering patterns and ancient basin water chemistry. Acknowledging all these aspects, this contribution explored the possible connections of the basins with the ‘supercontinent’ cycles, viz. Columbia and Rodinia through this time period. From collation of geochronologic data, it is concluded that the most prevalent dates obtained from the basin fills fall in 1650–1450 Ma and 1100–1000 Ma. time bracket, concomitant with the breakup of supercontinent ‘Columbia’ and the amalgamation of the following assembly of supercontinent ‘Rodinia’. A few may also be connected with the formation of ‘Columbia’, viz. Aravalli and Cuddapah, and the fragmentation of Rodinia, viz. Marwar.


Proterozoic Sedimentary basins Columbia Rhodinia Tectonics and sedimentation India 


  1. Absar N, Raza M, Roy M, Naqvi SM, Roy AK (2009) Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precambrian Res 168(3–4):313–329CrossRefGoogle Scholar
  2. Absar N, Raza MQ, Augustine S, Managave S, Srinivasa Sarma D, Balakrishnan S (2019) Trace, rare-earth elements and C, O isotope systematics of carbonate rocks of proterozoic Bhima Group, Eastern Dharwar Craton, India: implications for the source of dissolved components, redox condition and biogeochemical cycling of mesoproterozoic ocean. In: Mondal MEA (ed) Geological evolution of the precambrian indian shield, Society of Earth Scientists Series. Springer International Publishing AG, Basel, pp 297–326Google Scholar
  3. Ahmad T, Harris N, Bickle M, Chapman H, Bunbury J, Prince C (2000) Isotopic constraints on the structural relationships between the lesser Himalayan series and the high Himalayan crystalline series, Garhwal Himalaya. Geol Soc Am Bull 112(3):467–477CrossRefGoogle Scholar
  4. Ansari AH, Pandey SK, Sharma M, Agrawal S, Kumar Y (2018) Carbon and oxygen isotope stratigraphy of the Ediacaran Bilara Group, Marwar Supergroup, India: evidence for high amplitude carbon isotopic negative excursions. Precambrian Res 308:75–91CrossRefGoogle Scholar
  5. Azmi RJ, Paul SK (2004) Discovery of Precambrian–Cambrian boundary protoconodonts from the Gangolihat Dolomite of Inner Kumaun Lesser Himalaya: implication on age and correlation. Curr Sci 86:1653–1660Google Scholar
  6. Basu A, Bickford ME (2015) An alternate perspective on the opening and closing of the intracratonic Purana basins in peninsular India. J Geol Soc India 85(1):5–25CrossRefGoogle Scholar
  7. Bauer W, Jacobs J, Fanning CM, Schmidt R (2003) Late Mesoproterozoic arc and back-arc volcanism in the Heimefrontfjella (East Antarctica) and implications for the palaeogeography at the southeastern margin of the Kaapvaal-Grunehogna Craton. Gondwana Res 6(3):449–465CrossRefGoogle Scholar
  8. Bengtson S, Belivanova V, Rasmussen B, Whitehouse M (2009) The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proc Natl Acad Sci 106(19):7729–7734CrossRefGoogle Scholar
  9. Bengtson S, Sallstedt T, Belivanova V, Whitehouse M (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol 15(3):e2000735CrossRefGoogle Scholar
  10. Bhaskar Rao YJ, Pantulu GVC, Damodara Reddy V, Gopalan K (1994) Time of early sedimentation and volcanism in the Proterozoic Cuddapah basin, south India: evidence from the Rb-Sr age of Pulivendula mafic sill. Mem. Geol. Surv. India 33:329–338Google Scholar
  11. Bhattacharyya A (1996) Recent advances in Vindhyan geology (no. 36). Geological Society of IndiaGoogle Scholar
  12. Bickford ME, Basu A, Patranabis-Deb S, Dhang PC, Schieber J (2011a) New U–PbSHRIMP zircon ages of the Dhamda Tuff in the Mesoproterozoic Chhattisgarh Basin, Peninsular India: stratigraphic implication and significance of a 1-Ga thermal-magmatic event. J Geol 119(1):535–548CrossRefGoogle Scholar
  13. Bickford ME, Basu A, Patranabis-Deb S, Dhang PC, Schieber J (2011b) Depositional history of the Chhattisgarh basin, central India: constraints from new SHRIMP zircon ages. J Geol 119(1):33–50CrossRefGoogle Scholar
  14. Bickford ME, Saha D, Schieber J, Kamenov G, Russell A, Basu A (2013) New U-Pb ages of zircons in the Owk Shale (Kurnool Group) with reflections on Proterozoic porcellanites in India. J Geol Soc India 82(3):207–216CrossRefGoogle Scholar
  15. Bose PK, Banerjee S, Sarkar S (1997) Slope-controlled seismic deformation and tectonic framework of deposition: Koldaha Shale, India. Tectonophysics 269(1–2):151–169CrossRefGoogle Scholar
  16. Bose PK, Chakrabarty S, Sarkar S (1999) Recognition of ancient eolian longitudinal dunes: a case study in Upper Bhander Sandstone, Son valley, India. J Sediment Res 69(1):74–83CrossRefGoogle Scholar
  17. Bose PK, Sarkar S, Chakrabarty S, Banerjee S (2001) Overview of the Meso-to Neoproterozoic evolution of the Vindhyan basin, central India. Sediment Geol 141:395–419CrossRefGoogle Scholar
  18. Bose PK, Eriksson PG, Sarkar S, Wright DT, Samanta P, Mukhopadhyay S, Mandal S, Banerjee S, Altermann W (2012) Sedimentation patterns during the Precambrian: a unique record? Mar Pet Geol 33(1):34–68CrossRefGoogle Scholar
  19. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396(6710):450CrossRefGoogle Scholar
  20. Chakraborti R, Basu AR, Chakraborty A (2007) Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Res 159(3–4):260–274CrossRefGoogle Scholar
  21. Chakraborty PP, Paul S (2005) Proterozoic braid delta deposits: Lohardih formation, Chhattisgarh Supergroup, India. Indian J Geol 75(1/4):233Google Scholar
  22. Chakraborty PP, Paul S (2008) Forced regressive wedges on a Neoproterozoic siliciclastic shelf: Chandarpur Group, central India. Precambrian Res 162(1–2):227–247CrossRefGoogle Scholar
  23. Chakraborty PP, Paul P (2014) Depositional character of a dry-climate alluvial fan system from Palaeoproterozoic rift setting using facies architecture and palaeohydraulics: example from the Par formation, Gwalior Group, central India. J Asian Earth Sci 91:298–315CrossRefGoogle Scholar
  24. Chakraborty PP, Sarkar A, Bhattacharya SK, Sanyal P (2002) Isotopic and sedimentological clues to productivity change in Late Riphean Sea: a case study from two intracratonic basins of India. J Earth Syst Sci 111(4):379–390CrossRefGoogle Scholar
  25. Chakraborty PP, Sarkar A, Das K, Das P (2009) Alluvial fan to storm-dominated shelf transition in the Mesoproterozoic Singhora Group, Chhattisgarh Supergroup, Central India. Precambrian Res 170(1–2):88–106CrossRefGoogle Scholar
  26. Chakraborty PP, Dey S, Mohanty SP (2010) Proterozoic platform sequences of Peninsular India: implications towards basin evolution and supercontinent assembly. J Asian Earth Sci 39(6):589–607CrossRefGoogle Scholar
  27. Chakraborty PP, Das P, Saha S, Das K, Mishra SR, Paul P (2012) Microbial mat related structures (MRS) from Mesoproterozoic Chhattisgarh and Khariar basins, Central India and their bearing on shallow marine sedimentation. Episodes 35(4):513–523CrossRefGoogle Scholar
  28. Chakraborty PP, Pant NC, Paul PP (2015a) Controls on sedimentation in Indian Palaeoproterozoic basins: clues from the Gwalior and Bijawar basins, central India. Geol Soc Lond Mem 43(1):67–83CrossRefGoogle Scholar
  29. Chakraborty PP, Saha S, Das P (2015b) Geology of Mesoproterozoic Chhattisgarh Basin, central India: current status and future goals. Geol Soc Lond Mem 43(1):185–205CrossRefGoogle Scholar
  30. Chakraborty PP, Saha S, Das K (2017) Record of continental to marine transition from the Mesoproterozoic Ampani basin, Central India: an exercise of process-based sedimentology in a structurally deformed basin. J Asian Earth Sci 143:122–140CrossRefGoogle Scholar
  31. Chakraborty PP, Sharma R, Kumar P (2019) Earthquake-induced soft sediment deformation (SSD) structures from the Bilara limestone formation, Marwar basin, India. J Earth Syst Sci 128(162):1–16Google Scholar
  32. Chaudhuri AK (2003) Stratigraphy and palaeogeography of the Godavari Supergroup in the south-central Pranhita-Godavari Valley, south India. J Asian Earth Sci 21(6):595–611CrossRefGoogle Scholar
  33. Chaudhuri AK, Deb G (2004) Proterozoic rifting in the Pranhita–Godavari valley: implication on India–Antarctica linkage. Gondwana Res 7(2):301–312CrossRefGoogle Scholar
  34. Chaudhuri AK, Saha D, Deb GK, Deb SP, Mukherjee MK, Ghosh G (2002) The Purana basins of southern cratonic province of India—a case for Mesoproterozoic fossil rifts. Gondwana Res 5(1):23–33CrossRefGoogle Scholar
  35. Chaudhuri AK, Deb GK, Patranabis-Deb S, Sarkar S (2012) Paleogeographic and tectonic evolution of the Pranhita-Godavari Valley, Central India: a stratigraphic perspective. Am J Sci 312(7):766–815CrossRefGoogle Scholar
  36. Chauhan DS, Ram B, Ram N (2004) Jodhpur Sandstone: a gift of ancient beaches to western Rajasthan. J Geol Soc India 64:265–276Google Scholar
  37. Conrad JE, Hein JR, Chaudhuri AK, Patranabis-Deb S, Mukhopadhyay J, Deb GK, Beukes NJ (2011) Constraints on the development of Proterozoic basins in central India from 40Ar/39Ar analysis of authigenic glauconitic minerals. Bulletin 123(1–2):158–167Google Scholar
  38. Cozzi A, Rea G, Craig J (2008) Global geology to hydrocarbon exploration: Ediacaran-early Cambrian petroleum plays of Oman, Pakistan and India. Paper presented in the GEO India Convention & Exhibition; September 16–19, New Delhi, IndiaGoogle Scholar
  39. Crosby CH, Bailey JV, Sharma M (2014) Fossil evidence of iron-oxidizing chemolithotrophy linked to phosphogenesis in the wake of the Great Oxidation Event. Geology 42(11):1015–1018CrossRefGoogle Scholar
  40. Das DP, Kundu A, Das N, Dutta DR, Kumaran K, Ramamurthy S, Thangavelu C, Rajaiya V (1992) Lithostratigraphy and sedimentation of Chhattisgarh basin. Indian Minerals 46:271–288Google Scholar
  41. Das N, Dutta DR, Das DP (2001) Proterozoic cover sediments of southeastern Chhattisgarh state and adjoining parts of Orissa. Geol Surv India Spec Publ 55:237–262Google Scholar
  42. Das K, Yokoyama K, Chakraborty PP, Sarkar A (2009) Basal tuffs and contemporaneity of the Chhattisgarh and Khariar Basins based on new dates and geochemistry. J Geol 117(1):88–102CrossRefGoogle Scholar
  43. Das K, Chakraborty PP, Hayasaka Y, Kayama M, Saha S, Kimura K (2015) c.1450 Ma regional felsic volcanism at the fringe of the East Indian Craton: constraints from geochronology and geochemistry of tuff beds from detached sedimentary basins. Geol. Soc. Lond. Mem 43(1):207–221CrossRefGoogle Scholar
  44. Datta B (1998) Stratigraphic and sedimentologic evolution of the Proterozoic siliciclastics in the southern part of Chhattisgarh and Khariar, Central India. J Geol Soc India 51:345–360Google Scholar
  45. Dayal AM, Mani D, Madhavi T, Kavitha S, Kalpana MS, Patil DJ, Sharma M (2014) Organic geochemistry of the Vindhyan sediments: implications for hydrocarbons. J Asian Earth Sci 91:329–338CrossRefGoogle Scholar
  46. De C (2003) Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, late Neoproterozoic of India. J Asian Earth Sci 21(4):387–395CrossRefGoogle Scholar
  47. De C (2006) Ediacara fossil assemblage in the upper Vindhyans of Central India and its significance. J Asian Earth Sci 27(5):660–683CrossRefGoogle Scholar
  48. De Celles PG, Gehrels GE, Najman Y, Martin AJ, Carter A, Garzanti E (2004) Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet Sci Lett 227(3–4):313–330Google Scholar
  49. Deb M, Thorpe R, Krstic D (2002) Hindoli group of rocks in the eastern fringe of the Aravalli-Delhi orogenic belt-Archean secondary greenstone belt or proterozoic supracrustals? Gondwana Res 5(4):879–883CrossRefGoogle Scholar
  50. Dey, S., 2015. Geological history of the Kaladgi–Badami and Bhima basins, south India: sedimentation in Proterozoic intracratonic set-up. In: Mazumder, R., & Eriksson, P. G., (eds) Precambrian basins of India: stratigraphic and tectonic context. Geological Society, Memoirs, Geological Society London, 43(1), 283–296Google Scholar
  51. Donaldson JA, Eriksson PG, Altermann W (2002) Actualistic versus non-actualistic conditions in the Precambrian: a reappraisal of an enduring discussion. In: Altermann W, Corcoran PL (eds) Precambrian sedimentary environments: a modern approach to ancient depositional systems, vol 33. Blackwell, Oxford, pp 3–13. I.A.S. special publicationGoogle Scholar
  52. Eriksson PG, Condie KC, Tirsgaard H, Mueller WU, Altermann W, Miall AD, Aspler LB, Catuneanu O, Chiarenzelli JR (1998) Precambrian clastic sedimentation systems. Sediment Geol 120(1–4):5–53CrossRefGoogle Scholar
  53. Eriksson PG, Martins-Neto MA, Nelson DR, Aspler LB, Chiarenzelli JR, Catuneanu O, Sarkar S, Altermann W, de W Rautenbach CJ (2001) An introduction to Precambrian basins: their characteristics and genesis. Sediment Geol 141-142:1–35CrossRefGoogle Scholar
  54. Eriksson PG, Sarkar S, Samanta P, Banerjee S, Porada H, Catuneanu O (2010) Paleoenvironmental context of microbial mat-related structures in siliciclastic rocks. In: Microbial mats. p 71–108Google Scholar
  55. French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 Ma Southern Bastar–Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Res 160(3–4):308–322CrossRefGoogle Scholar
  56. George BG, Ray JS, Kumar S (2019) Geochemistry of carbonate formations of the Chhattisgarh Supergroup, central India: implications for Mesoproterozoic global events. Can J Earth Sci 56(3):335–346CrossRefGoogle Scholar
  57. Ghosh SK (1991) Palaeoenvironmental analysis of the late Proterozoic Nagthat Formation, NW Kumaun Lesser Himalaya, India. Sediment Geol 71(1–2):33–45CrossRefGoogle Scholar
  58. Gopalan K, Kumar A, Kumar S, Vijayagopal B (2013) Depositional history of the Upper Vindhyan succession, central India: time constraints from Pb–Pb isochron ages of its carbonate components. Precambrian Res 233:108–117CrossRefGoogle Scholar
  59. Gregory LC, Meert JG, Bingen B, Pandit MK, Torsvik TH (2009) Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Res 170(1–2):13–26CrossRefGoogle Scholar
  60. Gupta S, Rai SS, Prakasam KS, Srinagesh D, Bansal BK, Chadha RK, Priestley K, Gaur VK (2003) The nature of the crust in southern India: implications for Precambrian crustal evolution. Geophys Res Lett 30(8)Google Scholar
  61. Haldar D, Ghosh RN (2000) Eruption of Bijawar lava: an example of Precambrian volcanicity under stable cratonic conditions. Geol Surv India Hyd Spec Publ 57:151–170Google Scholar
  62. He Y, Zhao G, Sun M, Xia X (2009) SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Res 168(3–4):213–222CrossRefGoogle Scholar
  63. Holland TH (1913) Indian geological terminology. Mem Geol Surv India 51(184):20Google Scholar
  64. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, PrincetonGoogle Scholar
  65. Hou G, Santosh M, Qian X, Lister GS, Li J (2008) Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondwana Res 14(3):395–409CrossRefGoogle Scholar
  66. Hughes NC, Peng S, Bhargava ON, Ahulwalia AD, Walia S, Myrow PM, Parcha SK (2005) The Cambrian biostratigraphy of the Tal Group, Lesser Himalaya, India, and early Tsanglangpuan (late early Cambrian) trilobites from the Nigali Dhar syncline. Geol Mag 142(1):57–80CrossRefGoogle Scholar
  67. Jayananda M, Banerjee M, Pant NC, Dasgupta S, Kano T, Mahesha N, Mahabaleswar B (2012) 2.62 Ga high-temperature metamorphism in the central part of the Eastern Dharwar Craton: implications for late Archaean tectonothermal history. Geol J 47(2–3):213–236CrossRefGoogle Scholar
  68. Jiang G, Sohl LE, Christie-Blick N (2003) Neoproterozoic stratigraphic comparison of the Lesser Himalayan (India) and Yangtze Block (South China): paleogeographic implications. Geology 31:917–920CrossRefGoogle Scholar
  69. Kale VS, Peshwa VV (1995) The Bhima basin: field guide. Geol Soc India 142Google Scholar
  70. Kaufman AJ, Jiang G, Christie-Blick N, Banerjee DM, Rai V (2006) Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Res 147(1–2):156–185CrossRefGoogle Scholar
  71. King W (1881) Geology of the Pranhita-Godavari Valley. Geol Sur India Mem 19:151–311Google Scholar
  72. Kohn MJ, Paul SK, Corrie SL (2010) The lower Lesser Himalayan sequence: a Paleoproterozoic arc on the northern margin of the Indian plate. Bulletin 122(3–4):323–335Google Scholar
  73. Kumar S (2001) Mesoproterozoic megafossil Chuaria–Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India. Precambrian Res 106(3–4):187–211CrossRefGoogle Scholar
  74. Kumar S, Ahmad S (2014) Microbially induced sedimentary structures (MISS) from the Ediacaran Jodhpur Sandstone, Marwar Supergroup, Western Rajasthan. J Asian Earth Sci 91:352–361CrossRefGoogle Scholar
  75. Kumar S, Pandey SK (2008) Discovery of trilobite trace fossils from the Nagaur Sandstone, the Marwar Supergroup, Bikaner District, Rajasthan. Curr Sci 94(8):1081–1085Google Scholar
  76. Kumar G, Shanker R, Maithy PK, Mathur VK, Bhattacharyya SK, Jain RK (1997) Terminal proterozoic-Cambrian sequences in India: a review with special reference to Precambrian-Cambrian boundary. Palaeobotonist 2:19–31Google Scholar
  77. Lakshminarayana G, Bhattacharjee S, Kumar A (1999) Palaeocurrents and depositional setting in the Banganapalle Formation, Kurnool Sub-basin, Cuddapah Basin, Andhra Pradesh. J Geol Soc India 53:255–259Google Scholar
  78. Lehmann B, Storey C, Mainkar D, Jeffries T (2007) In-situ U–Pb dating of titanite in the Tokapal–Bhejripadar kimberlite system, central India. J Geol Soc India 69:553–556Google Scholar
  79. Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160(1–2):179–210CrossRefGoogle Scholar
  80. Malone SJ, Meert JG, Banerjee DM, Pandit MK, Tamrat E, Kamenov GD, Pradhan VR, Sohl LE (2008) Paleomagnetism and detrital zircon geochronology of the upper Vindhyan Sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana basins? Precambrian Res 164(3–4):137–159CrossRefGoogle Scholar
  81. Mazumdar A, Bhattacharya SK (2004) Stable isotopic study of late Neoproterozoic-early Cambrian (?) sediments from Nagaur-Ganganagar basin, western India: possible signatures of global and regional C-isotopic events. Geochem J 38(2):163–175CrossRefGoogle Scholar
  82. Mazumdar A, Strauss H (2006) Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic–early Cambrian Bilara Group (Nagaur-Ganganagar Basin, India): constraints on intrabasinal correlation and global sulfur cycle. Precambrian Res 149(3–4):217–230CrossRefGoogle Scholar
  83. Mazumder R, Eriksson PG (2015) Precambrian basins of India: stratigraphic and tectonic context. Geol Soc Lond Mem 43(1):1–4CrossRefGoogle Scholar
  84. McKenzie NR, Hughes NC, Myrow PM, Sharma M (2011) Correlation of Precambrian–Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet Sci Lett 312(3–4):471–483CrossRefGoogle Scholar
  85. Meert JG, Pandit MK (2015) The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. Geol Soc Lond Mem 43(1):29–54CrossRefGoogle Scholar
  86. Meert JG, Pandit MK, Pradhan VR, Banks J, Sirianni R, Stroud M, Newstead B, Gifford J (2010) Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey. J Asian Earth Sci 39(6):483–515CrossRefGoogle Scholar
  87. Miller C, Klotzli U, Frank W, Thoni M, Grasemann B (2000) Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism. Precambrian Res 103(3–4):191–206CrossRefGoogle Scholar
  88. Moitra AK (1995) Depositional environmental history of the Chhattisgarh Basin, MP, based on stromatolites and microbiota. J Geol Soc India 46(4):359–368Google Scholar
  89. Mukherjee A, Bickford ME, Hietpas J, Schieber J, Basu A (2012) Implications of a newly dated ca. 1000-Ma rhyolitic tuff in the Indravati Basin, Bastar Craton, India. J Geol 120(4):477–485CrossRefGoogle Scholar
  90. Murti KS (1987) Stratigraphy and sedimentation in Chhattisgarh basin. In: Radhakrishna BP (ed) Purana Basins of Peninsular India, Memoir Geological Society of India, vol 6, pp 239–257Google Scholar
  91. Ohmoto H (2004) The Archean atmosphere, hydrosphere and biosphere. The Precambrian Earth: tempos and events.Google Scholar
  92. Pandey UK, Sastry DVLN, Pandey BK, Roy M, Rawat TPS, Ranjan R, Shrivastava VK (2012) Geochronological (Rb-Sr and Sm-Nd) studies on intrusive gabbros and dolerite dykes from parts of Northern and Central Indian cratons: implications for the age of onset of sedimentation in Bijawar and Chhattisgarh basins and uranium mineralisation. J Geol Soc India 79(1):30–40CrossRefGoogle Scholar
  93. Pandit MK, Sial AN, Jamrani SS, Ferreira VP (2001) Carbon isotopic profile across the Bilara group rocks of trans-Aravalli Marwar Supergroup in western India: implications for Neoproterozoic—Cambrian transition. Gondwana Res 4(3):387–394CrossRefGoogle Scholar
  94. Patil Pillai S, Kale VS (2011) Seismites in the Lokapur Subgroup of the Proterozoic Kaladgi Basin, South India: a testimony to syn-sedimentary tectonism. Sediment Geol 240(1–2):1–13CrossRefGoogle Scholar
  95. Patranabis-Deb S, Chaudhuri AK (2002) Stratigraphic architecture of the Proterozoic succession in the eastern Chhattisgarh Basin, India: tectonic implications. Sediment Geol 147(1–2):105–125CrossRefGoogle Scholar
  96. Patranabis-Deb S, Chaudhuri AK (2007) A retreating fan-delta system in the Neoproterozoic Chhattisgarh rift basin, central India: major controls on its evolution. AAPG Bull 91(6):785–808CrossRefGoogle Scholar
  97. Patranabis-Deb S, Chaudhuri AK (2008) Sequence evolution in the eastern Chhattisgarh Basin: constraints on correlation and stratigraphic analysis. Palaeobotanist 57:15–32Google Scholar
  98. Patranabis-Deb S, Bickford ME, Hill B, Chaudhuri AK, Basu A (2007) SHRIMP ages of zircon in the uppermost tuff in Chhattisgarh basin in central India require ∼500-Ma adjustment in Indian Proterozoic stratigraphy. J Geol 115(4):407–415CrossRefGoogle Scholar
  99. Paul PP (2017) Autogenic and continental and marine sedimentation Allogenic controls on late Paleoproterozoic sedimentation: clues from Gwalior rift basin, Central India. Unpublished PhD thesis, University of Delhi, Delhi, IndiaGoogle Scholar
  100. Planavsky NJ, Tarhan LG, Bellefroid EJ, Evans DA, Reinhard CT, Love GD, Lyons TW (2015) Late Proterozoic transitions in climate, oxygen, and tectonics, and the rise of complex life. In: Polly PD, Head JJ, Fox DL (eds) Earth-life transitions: paleobiology in the context of earth system evolution, vol 21. Yale University Press, New Haven, pp 1–36Google Scholar
  101. Ram J, Shukla SN, Pramanik AG, Varma BK, Chandra G, Murthy MSN (1996) Recent investigations in the Vindhyan basin: implications for the basin tectonics. Mem Geol Soc India 36:267–286Google Scholar
  102. Ramakrishnan M, Vaidyanadhan R (2010) Geology of India (Vol. 1 & 2). Geological Survey of India. Publica 2(1)Google Scholar
  103. Rao NC, Miller JA, Gibson SA, Pyle DM, Madhavan V (1999a) Precise Ar-40/Ar-39 age determinations of the Kotakonda Kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm emplacement in the Eastern Dharwar craton. J Geol Soc India 53(4):425–432Google Scholar
  104. Rao VS, Sreenivas B, Balaram V, Govil PK, Srinivasan R (1999b) The nature of the Archean upper crust as revealed by the geochemistry of the Proterozoic shales of the Kaladgi basin, Karnataka, southern India. Precambrian Res 98(1–2):53–65Google Scholar
  105. Rao JM, Rao GP, Widdowson M, Kelley SP (2005) Evolution of Proterozoic mafic dyke swarms of the Bundelkhand Granite Massif, central India. Curr Sci 88:502–506Google Scholar
  106. Rasmussen B, Bose PK, Sarkar S, Banerjee S, Fletcher IR, McNaughton NJ (2002) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: possible implications for early evolution of animals. Geology 30(2):103–106CrossRefGoogle Scholar
  107. Ray JS, Martin MW, Veizer J, Bowring SA (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology 30(2):131–134CrossRefGoogle Scholar
  108. Ray JS, Veizer J, Davis WJ (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Res 121(1–2):103–140CrossRefGoogle Scholar
  109. Raza M, Casshyap SM (1996) A tectono-sedimentary model of evolution of middle Proterozoic Vindhyan basin. Mem Geol Soc India 36:287–300Google Scholar
  110. Raza M, Ahmad AHM, Shamim Khan M, Khan F (2012) Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: implications for provenance and source-area weathering. Int Geol Rev 54(1):111–129CrossRefGoogle Scholar
  111. Reddy S, Evans DAD (2009) Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. Geol Soc Lond, Spec Publ 323(1):1–26CrossRefGoogle Scholar
  112. Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236(3–4):773–796CrossRefGoogle Scholar
  113. Roberts NM (2013) The boring billion?–Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geosci Front 4(6):681–691CrossRefGoogle Scholar
  114. Rogers JJ, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5(1):5–22CrossRefGoogle Scholar
  115. Saha D, Chakraborty S (2003) Deformation pattern in the Kurnool and Nallarnalai Groups in the northeastern part (Palnad area) of the Cuddapah Basin, South India and its implication on Rodinia/Gondwana tectonics. Gondwana Res 6(4):573–583CrossRefGoogle Scholar
  116. Saha D, Ghosh G (1998) Lithostratigraphy of deformed Proterozoic rocks from around the confluence of the Godavari and Indravati rivers, South India. Ind J Geol 70(3):217–230Google Scholar
  117. Saha D, Patranabis-Deb S (2014) Proterozoic evolution of Eastern Dharwar and Bastar cratons, India—an overview of the intracratonic basins, craton margins and mobile belts. J Asian Earth Sci 91:230–251CrossRefGoogle Scholar
  118. Saha D, Tripathy V (2012) Tuff beds in Kurnool sub-basin, southern India and implications for felsic volcanism in Proterozoic intracratonic basins. Geosci Front 3(4):429–444CrossRefGoogle Scholar
  119. Sarangi S, Gopalan K, Kumar S (2004) Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res 132(1–2):107–121CrossRefGoogle Scholar
  120. Sarkar S, Bose PK (1992) Variations in Late Proterozoic stromatolites over a transition from basin plain to nearshore subtidal zone. Precambrian Res 55(1–2):139–157CrossRefGoogle Scholar
  121. Sarkar S, Banerjee S, Eriksson PG (2004) Microbial mat features in sandstones illustrated. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events, Developments in Precambrian geology, vol 12. Elsevier, Amsterdam, pp 673–675Google Scholar
  122. Sarkar S, Bose PK, Samanta P, Sengupta P, Eriksson PG (2008) Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Res 162(1–2):248–263CrossRefGoogle Scholar
  123. Sarkar A, Chakraborty PP, Mishra B, Bera MK, Sanyal P, Paul S (2010) Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: sulphur isotope clues from Indian Proterozoic basins. Geol Mag 147(2):206–218CrossRefGoogle Scholar
  124. Sarkar S, Samanta P, Mukhopadhyay S, Bose PK (2012) Stratigraphic architecture of the Sonia Fluvial interval, India in its Precambrian context. Precambrian Res 214:210–226CrossRefGoogle Scholar
  125. Sarkar S, Banerjee S, Samanta P, Chakraborty N, Chakraborty PP, Mukhopadhyay S, Singh AK (2014) Microbial mat records in siliciclastic rocks: examples from four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. J Asian Earth Sci 91:362–377CrossRefGoogle Scholar
  126. Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282(53–86):80–83CrossRefGoogle Scholar
  127. Sharma M (2006) Late Palaeoproterozoic (Statherian) carbonaceous films from the Olive Shale (Koldaha Shale), Semri Group, Vindhyan Supergroup, India. J Palaeontol Soc India 51(2):27–35Google Scholar
  128. Sharma M, Shukla Y (2012) Mesoproterozoic carbonaceous fossils from the Neoproterozoic Bhima Basin, Karnataka, South India. Geol Soc Lond Spec Publ 366(1):277–293CrossRefGoogle Scholar
  129. Singh SP (1988) Stratigraphy and sedimentation pattern in the Proterozoic Delhi Supergroup, northwestern India. Mem Geol Soc India 7:193–206Google Scholar
  130. Singh AK (2015) Geology, geochemistry and evaluation of hydrocarbon source rock potential for the argillaceous intervals from Proterozoic Vindhyan basin. Unpub. Ph.D thesis. 211pGoogle Scholar
  131. Singh AP, Mishra DC (2002) Tectonosedimentary evolution of Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision: gravity, seismic and geodynamic constraints. J Geodyn 33(3):249–267CrossRefGoogle Scholar
  132. Singh CL, Lal T, Kumar A, Prajapati SK (2006) A study of geological setting of northeastern part of Chhattisgarh Basin, Mahanadi Graben and Bilaspur-Raigarh-Surguja gneissic belt from gravity anomalies. J Geol Soc India 68(6):1093Google Scholar
  133. Tang D, Shi X, Wang X, Jiang G (2016) Extremely low oxygen concentration in mid Proterozoic shallow seawaters. Precambrian Res 276:145–157CrossRefGoogle Scholar
  134. Tewari VC, Sial AN (2007) Neoproterozoic–Early Cambrian isotopic variation and chemostratigraphy of the Lesser Himalaya, India, Eastern Gondwana. Chem Geol 237(1–2):64–88CrossRefGoogle Scholar
  135. Torsvik TH, Carter LM, Ashwal LD, Bhushan SK, Pandit MK, Jamtveit B (2001) Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite (NW India). Precambrian Res 108(3):319–333CrossRefGoogle Scholar
  136. Upadhyay D, Raith MM, Mezger K, Hammerschmidt K (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos 89(3–4):447–477CrossRefGoogle Scholar
  137. Vasanthi A, Mallick K (2006) Bouguer gravity modeling of Kaladgi–Badami basin, Karnataka. J Geol Soc India 68(6):937Google Scholar
  138. Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59(1–4):125–162CrossRefGoogle Scholar
  139. Zhao G, Sun M, Wilde SA (2003) Correlations between the eastern block of the North China Craton and the South Indian block of the Indian shield: an Archaean to Palaeoproterozoic link. Precambrian Res 122(1–4):201–233CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Partha Pratim Chakraborty
    • 1
  • S. K. Tandon
    • 2
  • Sagnik Basu Roy
    • 3
  • Subhojit Saha
    • 4
  • Pritam P. Paul
    • 5
  1. 1.Department of GeologyUniversity of DelhiDelhiIndia
  2. 2.Indian Institute of Science Education and ResearchBhopalIndia
  3. 3.GAIL India LimitedNoidaIndia
  4. 4.Wadia Institute of Himalayan GeologyDehradunIndia
  5. 5.Department of Earth Sciences and EnvironmentManav Rachna International Institute of Research and StudiesFaridabadIndia

Personalised recommendations