Contribution of Mass Spectrometry-Based Proteomics to Discoveries in Developmental Biology

  • Yutaka Hashimoto
  • Todd M. Greco
  • Ileana M. CristeaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.


Xenopus Zebrafish Targeted mass spectrometry Quantitative proteomics Phosphoproteomics Protein complexes 



This research was supported by the NIH grants R01HL127640, R01HL135007, and R01HL126509 to I.M.C, and by the NINS Strategic International Research Exchange Promotion Program to Y.H. and I.M.C.


  1. 1.
    Griffiths, J. A., Scialdone, A., & Marioni, J. C. (2018). Using single-cell genomics to understand developmental processes and cell fate decisions. Molecular Systems Biology, 14(4), e8046.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Xie, D., Chen, C. C., Ptaszek, L. M., Xiao, S., Cao, X., Fang, F., et al. (2010). Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Research, 20(6), 804–815.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Deng, Q., Ramskold, D., Reinius, B., & Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343(6167), 193–196.PubMedGoogle Scholar
  4. 4.
    Session, A. M., Uno, Y., Kwon, T., Chapman, J. A., Toyoda, A., Takahashi, S., et al. (2016). Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 538(7625), 336–343.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Diez-Roux, G., Banfi, S., Sultan, M., Geffers, L., Anand, S., Rozado, D., et al. (2011). A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biology, 9(1), e1000582.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wilk, R., Hu, J., Blotsky, D., & Krause, H. M. (2016). Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes & Development, 30(5), 594–609.Google Scholar
  7. 7.
    Sollner, J. F., Leparc, G., Hildebrandt, T., Klein, H., Thomas, L., Stupka, E., et al. (2017). An RNA-Seq atlas of gene expression in mouse and rat normal tissues. Scientific Data, 4, 170185.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gucinski, A. C., & Boyne II, M. T. (2012). Evaluation of intact mass spectrometry for the quantitative analysis of protein therapeutics. Analytical Chemistry, 84(18), 8045–8051.PubMedGoogle Scholar
  9. 9.
    Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., et al. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Molecular & Cellular Proteomics, 4(10), 1487–1502.Google Scholar
  10. 10.
    Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A., & Yates, J. R. (2004). Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nature Methods, 1(1), 39–45.PubMedGoogle Scholar
  11. 11.
    Panchaud, A., Scherl, A., Shaffer, S. A., von Haller, P. D., Kulasekara, H. D., Miller, S. I., et al. (2009). Precursor acquisition independent from ion count: How to dive deeper into the proteomics ocean. Analytical Chemistry, 81(15), 6481–6488.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Gillet, L. C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., et al. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111 016717.Google Scholar
  13. 13.
    Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., et al. (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Analytical Chemistry, 77(7), 2187–2200.PubMedGoogle Scholar
  14. 14.
    Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B., & Aebersold, R. (2009). Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell, 138(4), 795–806.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S., & Coon, J. J. (2012). Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Molecular & Cellular Proteomics, 11(11), 1475–1488.Google Scholar
  16. 16.
    Hsu, J. L., Huang, S. Y., Chow, N. H., & Chen, S. H. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Analytical Chemistry, 75(24), 6843–6852.PubMedGoogle Scholar
  17. 17.
    Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., et al. (2003). Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry, 75(8), 1895–1904.PubMedGoogle Scholar
  18. 18.
    Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics : MCP, 3(12), 1154–1169.Google Scholar
  19. 19.
    Oda, Y., Huang, K., Cross, F. R., Cowburn, D., & Chait, B. T. (1999). Accurate quantitation of protein expression and site-specific phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 96(12), 6591–6596.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., et al. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 1(5), 376–386.Google Scholar
  21. 21.
    Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., et al. (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134(2), 353–364.PubMedGoogle Scholar
  22. 22.
    McClatchy, D. B. & Yates III, J. R. (2008). Stable isotope labeling of mammals (SILAM). CSH protocols, 2008, pdb prot4940.Google Scholar
  23. 23.
    Krijgsveld, J., Ketting, R. F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C. P., et al. (2003). Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nature Biotechnology, 21(8), 927–931.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sury, M. D., Chen, J. X., & Selbach, M. (2010). The SILAC fly allows for accurate protein quantification in vivo. Molecular & Cellular Proteomics, 9(10), 2173–2183.Google Scholar
  25. 25.
    Hilger, M., & Mann, M. (2012). Triple SILAC to determine stimulus specific interactions in the Wnt pathway. Journal of Proteome Research, 11(2), 982–994.PubMedGoogle Scholar
  26. 26.
    Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y., et al. (2011). Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature Protocols, 6(2), 147–157.PubMedGoogle Scholar
  27. 27.
    Wenger, C. D., Lee, M. V., Hebert, A. S., McAlister, G. C., Phanstiel, D. H., Westphall, M. S., et al. (2011). Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nature Methods, 8(11), 933–935.PubMedPubMedCentralGoogle Scholar
  28. 28.
    McAlister, G. C., Nusinow, D. P., Jedrychowski, M. P., Wuhr, M., Huttlin, E. L., Erickson, B. K., et al. (2014). MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Analytical Chemistry, 86(14), 7150–7158.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sonnett, M., Yeung, E., & Wuhr, M. (2018). Accurate, sensitive, and precise multiplexed proteomics using the complement reporter ion cluster. Analytical Chemistry, 90(8), 5032–5039.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Lowe, R., Shirley, N., Bleackley, M., Dolan, S., & Shafee, T. (2017). Transcriptomics technologies. PLoS Computational Biology, 13(5), e1005457.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., et al. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337–342.PubMedGoogle Scholar
  32. 32.
    Gao, Y., Liu, X., Tang, B., Li, C., Kou, Z., Li, L., et al. (2017). Protein expression landscape of mouse embryos during pre-implantation development. Cell Reports, 21(13), 3957–3969.PubMedGoogle Scholar
  33. 33.
    Casas-Vila, N., Bluhm, A., Sayols, S., Dinges, N., Dejung, M., Altenhein, T., et al. (2017). The developmental proteome of Drosophila melanogaster. Genome Research, 27(7), 1273–1285.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., et al. (2006). Global survey of organ and organelle protein expression in mouse: Combined proteomic and transcriptomic profiling. Cell, 125(1), 173–186.PubMedGoogle Scholar
  35. 35.
    Abramsson, A., Westman-Brinkmalm, A., Pannee, J., Gustavsson, M., von Otter, M., Blennow, K., et al. (2010). Proteomics profiling of single organs from individual adult zebrafish. Zebrafish, 7(2), 161–168.PubMedGoogle Scholar
  36. 36.
    Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., et al. (2014). A draft map of the human proteome. Nature, 509(7502), 575–581.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A. M., Lieberenz, M., Savitski, M. M., et al. (2014). Mass-spectrometry-based draft of the human proteome. Nature, 509(7502), 582–587.PubMedGoogle Scholar
  38. 38.
    Geiger, T., Velic, A., Macek, B., Lundberg, E., Kampf, C., Nagaraj, N., et al. (2013). Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Molecular & Cellular Proteomics, 12(6), 1709–1722.Google Scholar
  39. 39.
    Wang, R., Liu, X., Kuster-Schock, E., & Fagotto, F. (2012). Proteomic analysis of differences in ectoderm and mesoderm membranes by DiGE. Journal of Proteome Research, 11(9), 4575–4593.PubMedGoogle Scholar
  40. 40.
    Sharma, K., Schmitt, S., Bergner, C. G., Tyanova, S., Kannaiyan, N., Manrique-Hoyos, N., et al. (2015). Cell type- and brain region-resolved mouse brain proteome. Nature Neuroscience, 18(12), 1819–1831.PubMedGoogle Scholar
  41. 41.
    Ding, C., Li, Y., Guo, F., Jiang, Y., Ying, W., Li, D., et al. (2016). A cell-type-resolved liver proteome. Molecular & Cellular Proteomics, 15(10), 3190–3202.Google Scholar
  42. 42.
    Ebisuya, M., & Briscoe, J. (2018). What does time mean in development? Development, 145(12), dev164368.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Toma, K., Wang, T. C., & Hanashima, C. (2016). Encoding and decoding time in neural development. Development, Growth & Differentiation, 58(1), 59–72.Google Scholar
  44. 44.
    Grun, D., Kirchner, M., Thierfelder, N., Stoeckius, M., Selbach, M., & Rajewsky, N. (2014). Conservation of mRNA and protein expression during development of C. elegans. Cell Reports, 6(3), 565–577.PubMedGoogle Scholar
  45. 45.
    Alli Shaik, A., Wee, S., Li, R. H., Li, Z., Carney, T. J., Mathavan, S., et al. (2014). Functional mapping of the zebrafish early embryo proteome and transcriptome. Journal of Proteome Research, 13(12), 5536–5550.PubMedGoogle Scholar
  46. 46.
    Sun, L., Bertke, M. M., Champion, M. M., Zhu, G., Huber, P. W., & Dovichi, N. J. (2014). Quantitative proteomics of Xenopus laevis embryos: Expression kinetics of nearly 4000 proteins during early development. Scientific Reports, 4, 4365.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Peshkin, L., Wuhr, M., Pearl, E., Haas, W., Freeman Jr., R. M., Gerhart, J. C., et al. (2015). On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Developmental Cell, 35(3), 383–394.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Presler, M., Van Itallie, E., Klein, A. M., Kunz, R., Coughlin, M. L., Peshkin, L., et al. (2017). Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the Xenopus egg. Proceedings of the National Academy of Sciences of the United States of America, 114(50), E10838–E10847.PubMedPubMedCentralGoogle Scholar
  49. 49.
    van Hoof, D., Krijgsveld, J., & Mummery, C. (2012). Proteomic analysis of stem cell differentiation and early development. Cold Spring Harbor Perspectives in Biology, 4(3), a008177.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Melo-Braga, M. N., Meyer, M., Zeng, X., & Larsen, M. R. (2015). Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics--current state-of-the-art and challenges. Proteomics, 15(4), 656–674.PubMedGoogle Scholar
  51. 51.
    Yocum, A. K., Gratsch, T. E., Leff, N., Strahler, J. R., Hunter, C. L., Walker, A. K., et al. (2008). Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation. Molecular & Cellular Proteomics, 7(4), 750–767.Google Scholar
  52. 52.
    Kim, S. Y., Kim, M. J., Jung, H., Kim, W. K., Kwon, S. O., Son, M. J., et al. (2012). Comparative proteomic analysis of human somatic cells, induced pluripotent stem cells, and embryonic stem cells. Stem Cells and Development, 21(8), 1272–1286.PubMedGoogle Scholar
  53. 53.
    Chaerkady, R., Kerr, C. L., Kandasamy, K., Marimuthu, A., Gearhart, J. D., & Pandey, A. (2010). Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells. Proteomics, 10(7), 1359–1373.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Boue, S., Paramonov, I., Barrero, M. J., & Izpisua Belmonte, J. C. (2010). Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate? PLoS One, 5(9), e12664.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hao, J., Li, W., Dan, J., Ye, X., Wang, F., Zeng, X., et al. (2013). Reprogramming- and pluripotency-associated membrane proteins in mouse stem cells revealed by label-free quantitative proteomics. Journal of Proteomics, 86, 70–84.PubMedGoogle Scholar
  56. 56.
    Sauls, K., Greco, T. M., Wang, L., Zou, M., Villasmil, M., Qian, L., et al. (2018). Initiating events in direct cardiomyocyte reprogramming. Cell Reports, 22(7), 1913–1922.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Osinalde, N., Aloria, K., Omaetxebarria, M. J., & Kratchmarova, I. (2017). Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1055–1056, 29–38.PubMedGoogle Scholar
  58. 58.
    Aebersold, R., Burlingame, A. L., & Bradshaw, R. A. (2013). Western blots versus selected reaction monitoring assays: Time to turn the tables? Molecular & Cellular Proteomics, 12(9), 2381–2382.Google Scholar
  59. 59.
    Deutsch, D. R., Frohlich, T., Otte, K. A., Beck, A., Habermann, F. A., Wolf, E., et al. (2014). Stage-specific proteome signatures in early bovine embryo development. Journal of Proteome Research, 13(10), 4363–4376.PubMedGoogle Scholar
  60. 60.
    Simicevic, J., Moniatte, M., Hamelin, R., Ahrne, E., & Deplancke, B. (2015). A mammalian transcription factor-specific peptide repository for targeted proteomics. Proteomics, 15(4), 752–756.PubMedGoogle Scholar
  61. 61.
    Morales Betanzos, C., Federspiel, J. D., Palubinsky, A. M., McLaughlin, B., & Liebler, D. C. (2016). Dynamic phosphorylation of apoptosis signal regulating kinase 1 (ASK1) in response to oxidative and electrophilic stress. Chemical Research in Toxicology, 29(12), 2175–2183.PubMedGoogle Scholar
  62. 62.
    Lin, C. C., Kitagawa, M., Tang, X., Hou, M. H., Wu, J., Qu, D. C., et al. (2018). CoA synthase regulates mitotic fidelity via CBP-mediated acetylation. Nature Communications, 9(1), 1039.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Mathias, R. A., Greco, T. M., Oberstein, A., Budayeva, H. G., Chakrabarti, R., Rowland, E. A., et al. (2014). Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell, 159(7), 1615–1625.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hashimoto, Y., Kinoshita, N., Greco, T. M., Jean Beltran, P. M., Federspiel, J. D., Naoto, U., et al. (2019). Mechanical force induces phosphorylation-mediated signaling that underlies tissue response and robustness in Xenopus embryos. Cell Systems, 8(3), 226–241.PubMedGoogle Scholar
  65. 65.
    Wu, M. Y., & Hill, C. S. (2009). Tgf-beta superfamily signaling in embryonic development and homeostasis. Developmental Cell, 16(3), 329–343.PubMedGoogle Scholar
  66. 66.
    Beenken, A., & Mohammadi, M. (2009). The FGF family: Biology, pathophysiology and therapy. Nature Reviews. Drug Discovery, 8(3), 235–253.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Steinhart, Z., & Angers, S. (2018). Wnt signaling in development and tissue homeostasis. Development, 145(11), dev14658.Google Scholar
  68. 68.
    Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., & Jorgensen, T. J. (2005). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cellular Proteomics, 4(7), 873–886.Google Scholar
  69. 69.
    Nuhse, T. S., Stensballe, A., Jensen, O. N., & Peck, S. C. (2003). Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Molecular & Cellular Proteomics, 2(11), 1234–1243.Google Scholar
  70. 70.
    Rush, J., Moritz, A., Lee, K. A., Guo, A., Goss, V. L., Spek, E. J., et al. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnology, 23(1), 94–101.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Guan, K. L., Yu, W., Lin, Y., Xiong, Y., & Zhao, S. (2010). Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides. Nature Protocols, 5(9), 1583–1595.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Xu, G., Paige, J. S., & Jaffrey, S. R. (2010). Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nature Biotechnology, 28(8), 868–873.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Krauchunas, A. R., Horner, V. L., & Wolfner, M. F. (2012). Protein phosphorylation changes reveal new candidates in the regulation of egg activation and early embryogenesis in D. melanogaster. Developmental Biology, 370(1), 125–134.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Peuchen, E. H., Cox, O. F., Sun, L., Hebert, A. S., Coon, J. J., Champion, M. M., et al. (2017). Phosphorylation dynamics dominate the regulated proteome during early Xenopus development. Scientific Reports, 7(1), 15647.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Henry, R. A., Singh, T., Kuo, Y. M., Biester, A., O’Keefe, A., Lee, S., et al. (2016). Quantitative measurement of histone tail acetylation reveals stage-specific regulation and response to environmental changes during Drosophila development. Biochemistry, 55(11), 1663–1672.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Liu, Z., Zhang, Q. B., Bu, C., Wang, D., Yu, K., Gan, Z., et al. (2018). Quantitative dynamics of proteome, Acetylome, and Succinylome during stem-cell differentiation into hepatocyte-like cells. Journal of Proteome Research, 17(7), 2491–2498.PubMedGoogle Scholar
  77. 77.
    Na, C. H., Jones, D. R., Yang, Y., Wang, X., Xu, Y., & Peng, J. (2012). Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. Journal of Proteome Research, 11(9), 4722–4732.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Rose, C. M., Isasa, M., Ordureau, A., Prado, M. A., Beausoleil, S. A., Jedrychowski, M. P., et al. (2016). Highly multiplexed quantitative mass spectrometry analysis of Ubiquitylomes. Cell Systems, 3(4), 395–403.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Cristea, I. M., Williams, R., Chait, B. T., & Rout, M. P. (2005). Fluorescent proteins as proteomic probes. Molecular & Cellular Proteomics, 4(12), 1933–1941.Google Scholar
  80. 80.
    Yao, Z., Darowski, K., St-Denis, N., Wong, V., Offensperger, F., Villedieu, A., et al. (2017). A global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Molecular Cell, 65(2), 347–360.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Joshi, P., Greco, T. M., Guise, A. J., Luo, Y., Yu, F., Nesvizhskii, A. I., et al. (2013). The functional interactome landscape of the human histone deacetylase family. Molecular Systems Biology, 9, 672.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen, B., et al. (2010). A global protein kinase and phosphatase interaction network in yeast. Science, 328(5981), 1043–1046.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Diner, B. A., Li, T., Greco, T. M., Crow, M. S., Fuesler, J. A., Wang, J., et al. (2015). The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Molecular Systems Biology, 11(1), 787.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Hein, M. Y., Hubner, N. C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., et al. (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), 712–723.PubMedGoogle Scholar
  85. 85.
    Huttlin, E. L., Ting, L., Bruckner, R. J., Gebreab, F., Gygi, M. P., Szpyt, J., et al. (2015). The BioPlex network: A systematic exploration of the human interactome. Cell, 162(2), 425–440.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Malovannaya, A., Lanz, R. B., Jung, S. Y., Bulynko, Y., Le, N. T., Chan, D. W., et al. (2011). Analysis of the human endogenous coregulator complexome. Cell, 145(5), 787–799.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Guruharsha, K. G., Rual, J. F., Zhai, B., Mintseris, J., Vaidya, P., Vaidya, N., et al. (2011). A protein complex network of Drosophila melanogaster. Cell, 147(3), 690–703.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Tandon, P., Miteva, Y. V., Kuchenbrod, L. M., Cristea, I. M., & Conlon, F. L. (2013). Tcf21 regulates the specification and maturation of proepicardial cells. Development, 140(11), 2409–2421.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Kaltenbrun, E., Greco, T. M., Slagle, C. E., Kennedy, L. M., Li, T., Cristea, I. M., et al. (2013). A Gro/TLE-NuRD corepressor complex facilitates Tbx20-dependent transcriptional repression. Journal of Proteome Research, 12(12), 5395–5409.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang, J., Cantor, A. B., & Orkin, S. H. (2009). Tandem affinity purification of protein complexes in mouse embryonic stem cells using in vivo biotinylation. Current Protocols in Stem Cell Biology, 11(1), 1B–5.Google Scholar
  91. 91.
    Hashimoto, Y., Shirane, M., Matsuzaki, F., Saita, S., Ohnishi, T., & Nakayama, K. I. (2014). Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. The Journal of Biological Chemistry, 289(19), 12946–12961.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kennedy, L., Kaltenbrun, E., Greco, T. M., Temple, B., Herring, L. E., Cristea, I. M., et al. (2017). Formation of a TBX20-CASZ1 protein complex is protective against dilated cardiomyopathy and critical for cardiac homeostasis. PLoS Genetics, 13(9), e1007011.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Waldron, L., Steimle, J. D., Greco, T. M., Gomez, N. C., Dorr, K. M., Kweon, J., et al. (2016). The cardiac TBX5 Interactome reveals a chromatin remodeling network essential for cardiac Septation. Developmental Cell, 36(3), 262–275.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Christov, C. P., Dingwell, K. S., Skehel, M., Wilkes, H. S., Sale, J. E., Smith, J. C., et al. (2018). A NuRD complex from Xenopus laevis eggs is essential for DNA replication during early embryogenesis. Cell Reports, 22(9), 2265–2278.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Conlon, F. L., Miteva, Y., Kaltenbrun, E., Waldron, L., Greco, T. M., & Cristea, I. M. (2012). Immunoisolation of protein complexes from Xenopus. Methods in Molecular Biology, 917, 369–390.PubMedGoogle Scholar
  96. 96.
    Greco, T. M., Miteva, Y., Conlon, F. L., & Cristea, I. M. (2012). Complementary proteomic analysis of protein complexes. Methods in Molecular Biology, 917, 391–407.PubMedGoogle Scholar
  97. 97.
    Omori, Y., Zhao, C., Saras, A., Mukhopadhyay, S., Kim, W., Furukawa, T., et al. (2008). Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nature Cell Biology, 10(4), 437–444.PubMedGoogle Scholar
  98. 98.
    Papaioannou, V. E. (2014). The T-box gene family: Emerging roles in development, stem cells and cancer. Development, 141(20), 3819–3833.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Dharmat, R., Eblimit, A., Robichaux, M. A., Zhang, Z., Nguyen, T. T., Jung, S. Y., et al. (2018). SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. The Journal of Cell Biology, 217(8), 2851–2865.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Bienvenu, F., Jirawatnotai, S., Elias, J. E., Meyer, C. A., Mizeracka, K., Marson, A., et al. (2010). Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature, 463(7279), 374–378.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Dey, A., Seshasayee, D., Noubade, R., French, D. M., Liu, J., Chaurushiya, M. S., et al. (2012). Loss of the tumor suppressor BAP1 causes myeloid transformation. Science, 337(6101), 1541–1546.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Havugimana, P. C., Hart, G. T., Nepusz, T., Yang, H., Turinsky, A. L., Li, Z., et al. (2012). A census of human soluble protein complexes. Cell, 150(5), 1068–1081.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Kristensen, A. R., Gsponer, J., & Foster, L. J. (2012). A high-throughput approach for measuring temporal changes in the interactome. Nature Methods, 9(9), 907–909.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Wan, C., Borgeson, B., Phanse, S., Tu, F., Drew, K., Clark, G., et al. (2015). Panorama of ancient metazoan macromolecular complexes. Nature, 525(7569), 339–344.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Gingras, A. C., Abe, K. T., & Raught, B. (2018). Getting to know the neighborhood: Using proximity-dependent biotinylation to characterize protein complexes and map organelles. Current Opinion in Chemical Biology, 48, 44–54.PubMedGoogle Scholar
  106. 106.
    Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of Cell Biology, 196(6), 801–810.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Kim, D. I., Birendra, K. C., Zhu, W., Motamedchaboki, K., Doye, V., & Roux, K. J. (2014). Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proceedings of the National Academy of Sciences of the United States of America, 111(24), E2453–E2461.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Hesketh, G. G., Youn, J. Y., Samavarchi-Tehrani, P., Raught, B., & Gingras, A. C. (2017). Parallel exploration of interaction space by BioID and affinity purification coupled to mass spectrometry. Methods in Molecular Biology, 1550, 115–136.PubMedGoogle Scholar
  109. 109.
    Uezu, A., Kanak, D. J., Bradshaw, T. W., Soderblom, E. J., Catavero, C. M., Burette, A. C., et al. (2016). Identification of an elaborate complex mediating postsynaptic inhibition. Science, 353(6304), 1123–1129.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Gupta, G. D., Coyaud, E., Goncalves, J., Mojarad, B. A., Liu, Y., Wu, Q., et al. (2015). A dynamic protein interaction landscape of the human centrosome-cilium Interface. Cell, 163(6), 1484–1499.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Han, J., & Kaufman, R. J. (2017). Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes & Development, 31(14), 1417–1438.Google Scholar
  112. 112.
    Rees, J. S., Li, X. W., Perrett, S., Lilley, K. S., & Jackson, A. P. (2015). Protein neighbors and proximity proteomics. Molecular & Cellular Proteomics, 14(11), 2848–2856.Google Scholar
  113. 113.
    Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., et al. (2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 339(6125), 1328–1331.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Lam, S. S., Martell, J. D., Kamer, K. J., Deerinck, T. J., Ellisman, M. H., Mootha, V. K., et al. (2015). Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature Methods, 12(1), 51–54.PubMedGoogle Scholar
  115. 115.
    Hung, V., Lam, S. S., Udeshi, N. D., Svinkina, T., Guzman, G., Mootha, V. K., et al. (2017). Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife, 6, e24463.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Branon, T. C., Bosch, J. A., Sanchez, A. D., Udeshi, N. D., Svinkina, T., Carr, S. A., et al. (2018). Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 36(9), 880–887.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Chen, C. L., Hu, Y., Udeshi, N. D., Lau, T. Y., Wirtz-Peitz, F., He, L., et al. (2015). Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 112(39), 12093–12098.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Reinke, A. W., Mak, R., Troemel, E. R., & Bennett, E. J. (2017). In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. Science Advances, 3(5), e1602426.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Rees, J. S., Li, X. W., Perrett, S., Lilley, K. S., & Jackson, A. P. (2015). Selective proteomic proximity labeling assay using Tyramide (SPPLAT): A quantitative method for the proteomic analysis of localized membrane-bound protein clusters. Current Protocols in Protein Science, 80, 19.27.11–19.27.18.Google Scholar
  120. 120.
    Graham, J. M. (2002). OptiPrep density gradient solutions for mammalian organelles. TheScientificWorldJOURNAL, 2, 1440–1443.PubMedPubMedCentralGoogle Scholar
  121. 121.
    McClatchy, D. B., Liao, L., Lee, J. H., Park, S. K., & Yates 3rd, J. R. (2012). Dynamics of subcellular proteomes during brain development. Journal of Proteome Research, 11(4), 2467–2479.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Christoforou, A., Mulvey, C. M., Breckels, L. M., Geladaki, A., Hurrell, T., Hayward, P. C., et al. (2016). A draft map of the mouse pluripotent stem cell spatial proteome. Nature Communications, 7, 8992.PubMedGoogle Scholar
  123. 123.
    Itzhak, D. N., Davies, C., Tyanova, S., Mishra, A., Williamson, J., Antrobus, R., et al. (2017). A mass spectrometry-based approach for mapping protein subcellular localization reveals the spatial proteome of mouse primary neurons. Cell Reports, 20(11), 2706–2718.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Deal, R. B., & Henikoff, S. (2011). The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nature Protocols, 6(1), 56–68.PubMedGoogle Scholar
  125. 125.
    Amin, N. M., Greco, T. M., Kuchenbrod, L. M., Rigney, M. M., Chung, M. I., Wallingford, J. B., et al. (2014). Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development, 141(4), 962–973.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Sigg, M. A., Menchen, T., Lee, C., Johnson, J., Jungnickel, M. K., Choksi, S. P., et al. (2017). Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways. Developmental Cell, 43(6), 744–762 e711.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Smits, A. H., Lindeboom, R. G., Perino, M., van Heeringen, S. J., Veenstra, G. J., & Vermeulen, M. (2014). Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs. Nucleic Acids Research, 42(15), 9880–9891.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Lombard-Banek, C., Moody, S. A., & Nemes, P. (2016). Single-cell mass spectrometry for discovery proteomics: Quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo. Angewandte Chemie, 55(7), 2454–2458.PubMedGoogle Scholar
  129. 129.
    Lombard-Banek, C., Reddy, S., Moody, S. A., & Nemes, P. (2016). Label-free quantification of proteins in single embryonic cells with neural fate in the cleavage-stage frog (Xenopus laevis) embryo using capillary electrophoresis electrospray ionization high-resolution mass spectrometry (CE-ESI-HRMS). Molecular & Cellular Proteomics, 15(8), 2756–2768.Google Scholar
  130. 130.
    Sun, L., Dubiak, K. M., Peuchen, E. H., Zhang, Z., Zhu, G., Huber, P. W., et al. (2016). Single cell proteomics using frog (Xenopus laevis) Blastomeres isolated from early stage embryos, which form a geometric progression in protein content. Analytical Chemistry, 88(13), 6653–6657.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Virant-Klun, I., Leicht, S., Hughes, C., & Krijgsveld, J. (2016). Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Molecular & Cellular Proteomics, 15(8), 2616–2627.Google Scholar
  132. 132.
    Zhu, Y., Piehowski, P. D., Zhao, R., Chen, J., Shen, Y., Moore, R. J., et al. (2018). Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nature Communications, 9(1), 882.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Budnik, B., Levy, E., Harmange, G., & Slavov, N. (2018). SCoPE-MS: Mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biology, 19(1), 161.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Roberts, B., Haupt, A., Tucker, A., Grancharova, T., Arakaki, J., Fuqua, M. A., et al. (2017). Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Molecular Biology of the Cell, 28(21), 2854–2874.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Dalvai, M., Loehr, J., Jacquet, K., Huard, C. C., Roques, C., Herst, P., et al. (2015). A scalable genome-editing-based approach for mapping multiprotein complexes in human cells. Cell Reports, 13(3), 621–633.PubMedGoogle Scholar
  136. 136.
    Holding, A. N. (2015). XL-MS: Protein cross-linking coupled with mass spectrometry. Methods, 89, 54–63.PubMedGoogle Scholar
  137. 137.
    Yu, C., & Huang, L. (2018). Cross-linking mass spectrometry: An emerging Technology for Interactomics and Structural Biology. Analytical Chemistry, 90(1), 144–165.PubMedGoogle Scholar
  138. 138.
    Kyriacou, E., & Heun, P. (2018). High-resolution mapping of centromeric protein association using APEX-chromatin fibers. Epigenetics & Chromatin, 11(1), 68.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yutaka Hashimoto
    • 1
  • Todd M. Greco
    • 1
  • Ileana M. Cristea
    • 1
    Email author
  1. 1.Department of Molecular Biology, Lewis Thomas LaboratoryPrinceton UniversityPrincetonUSA

Personalised recommendations