Bottlenecks in Proteomics: An Update

  • Devika Channaveerappa
  • Armand G. Ngounou Wetie
  • Costel C. DarieEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Mass spectrometry (MS) is the core for advanced methods in proteomic experiments. When effectively used, proteomics may provide extensive information about proteins and their post-translational modifications, as well as their interaction partners. However, there are also many problems that one can encounter during a proteomic experiment, including, but not limited to sample preparation, sample fractionation, sample analysis, data analysis & interpretation and biological significance. Here we discuss some of the problems that researchers should be aware of when performing a proteomic experiment.


Mass spectrometry Proteomics Biochemical fractionation 



We thank Dr. Devon A. Shipp, Polymer Science and Materials Group, Department of Chemistry and Biomolecular Science for his initial contribution for this chapter in the first edition of the book.


  1. 1.
    Darie, C. C., Shetty, V., Spellman, D. S., Zhang, G., Xu, C., Cardasis, H. L., et al. (2008). Blue native PAGE and mass spectrometry analysis of the ephrin stimulation-dependent protein-protein interactions in NG108-EphB2 cells. In Applications of mass spectrometry in life safety (NATO Science for peace and security series). Düsseldorf: Springer-Verlag.Google Scholar
  2. 2.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Loo, J. A., & Darie, C. C. (2012). Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics, 13(3–4), 538–557.Google Scholar
  3. 3.
    Darie, C. C. (2013). Mass spectrometry and its application in life sciences. Australian Journal of Chemistry, 66, 1–2.Google Scholar
  4. 4.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., & Darie, C. C. (2013). Identification of post-translational modifications by mass spectrometry. Australian Journal of Chemistry, 66, 734–748.Google Scholar
  5. 5.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Deinhardt, K., & Darie, C. C. (2013). Protein-protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cellular and Molecular Life Sciences, 71(2), 205–228.PubMedGoogle Scholar
  6. 6.
    Petrareanu, C., Macovei, A., Sokolowska, I., Woods, A. G., Lazar, C., Radu, G. L., et al. (2013). Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte-and biliary-like cells. PLoS One, 8(8), e71859.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Sokolowska, I., Dorobantu, C., Woods, A. G., Macovei, A., Branza-Nichita, N., & Darie, C. C. (2012). Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Science, 10(1), 47.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2013). Applications of mass spectrometry in proteomics. Australian Journal of Chemistry, 66, 721–733.Google Scholar
  9. 9.
    James, P. (1997). Protein identification in the post-genome era: The rapid rise of proteomics. Quarterly Reviews of Biophysics, 30(4), 279–331.PubMedGoogle Scholar
  10. 10.
    Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207.Google Scholar
  11. 11.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Wormwood, K. L., Dao, S., Patel, S., et al. (2013). Automated mass spectrometry-based functional assay for the routine analysis of the secretome. Journal of Laboratory Automation, 18(1), 19–29.Google Scholar
  12. 12.
    Sokolowska, I., Gawinowicz, M. A., Ngounou Wetie, A. G., & Darie, C. C. (2012). Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis, 33(16), 2527–2536.Google Scholar
  13. 13.
    Sokolowska, I., Ngounou Wetie, A. G., Roy, U., Woods, A. G., & Darie, C. C. (2013). Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochimica et Biophysica Acta, 1834(8), 1474–1483.Google Scholar
  14. 14.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2012). Automatic determination of disulfide bridges in proteins. Journal of Laboratory Automation, 17(6), 408–416.Google Scholar
  15. 15.
    Sokolowska, I., Woods, A. G., Wagner, J., Dorler, J., Wormwood, K., Thome, J., et al. (2011). Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  16. 16.
    Woods, A. G., Sokolowska, I., Taurines, R., Gerlach, M., Dudley, E., Thome, J., et al. (2012). Potential biomarkers in psychiatry: Focus on the cholesterol system. Journal of Cellular and Molecular Medicine, 16(6), 1184–1195.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Woods, A. G., Sokolowska, I., Yakubu, R., Butkiewicz, M., LaFleur, M., Talbot, C., et al. (2011). Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  18. 18.
    Viswanathan, S., Unlu, M., & Minden, J. S. (2006). Two-dimensional difference gel electrophoresis. Nature Protocols, 1(3), 1351–1358.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., & Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 17(10), 994–999.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., et al. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 1(5), 376–386.Google Scholar
  21. 21.
    Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P., & Kirschner, M. W. (2001). Dual inhibition of sister chromatid separation at metaphase. Cell, 107(6), 715–726.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Anderson, L., & Hunter, C. L. (2006). Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular & Cellular Proteomics, 5(4), 573–588.Google Scholar
  23. 23.
    Liu, H., Sadygov, R. G., & Yates 3rd, J. R. (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical Chemistry, 76(14), 4193–4201.Google Scholar
  24. 24.
    Savitski, M. F., & Savitski, M. M. (2010). Unbiased detection of posttranslational modifications using mass spectrometry. Methods in Molecular Biology, 673, 203–210.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Spiro, R. G. (2002). Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43R–56R.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Marino, K., Bones, J., Kattla, J. J., & Rudd, P. M. (2010). A systematic approach to protein glycosylation analysis: A path through the maze. Nature Chemical Biology, 6(10), 713–723.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tarrant, M. K., & Cole, P. A. (2009). The chemical biology of protein phosphorylation. Annual Review of Biochemistry, 78, 797–825.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gorman, J. J., Wallis, T. P., & Pitt, J. J. (2002). Protein disulfide bond determination by mass spectrometry. Mass Spectrometry Reviews, 21(3), 183–216.Google Scholar
  29. 29.
    McAuley, A., Jacob, J., Kolvenbach, C. G., Westland, K., Lee, H. J., Brych, S. R., et al. (2008). Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Science, 17(1), 95–106.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Koh, G. C., Porras, P., Aranda, B., Hermjakob, H., & Orchard, S. E. (2012). Analyzing protein-protein interaction networks. Journal of Proteome Research, 11(4), 2014–2031.PubMedPubMedCentralGoogle Scholar
  31. 31.
    De Las Rivas, J., & Fontanillo, C. (2010). Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Computational Biology, 6(6), e1000807.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gutstein, H. B., Morris, J. S., Annangudi, S. P., & Sweedler, J. V. (2008). Microproteomics: Analysis of protein diversity in small samples. Mass Spectrometry Reviews, 27(4), 316–330.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kasuga, K., Katoh, Y., Nagase, K., & Igarashi, K. (2017). Microproteomics with microfluidic-based cell sorting: Application to 1000 and 100 immune cells. Proteomics, 17(13–14), 1600420.PubMedCentralGoogle Scholar
  34. 34.
    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64–71.Google Scholar
  35. 35.
    Weaver, E. M., & Hummon, A. B. (2013). Imaging mass spectrometry: From tissue sections to cell cultures. Advanced Drug Delivery Reviews, 65(8), 1039–1055.PubMedGoogle Scholar
  36. 36.
    Zhou, J.-Y., Dann, G. P., Shi, T., Wang, L., Gao, X., Su, D., et al. (2012). Simple sodium dodecyl sulfate-assisted sample preparation method for LC-MS-based proteomics applications. Analytical Chemistry, 84(6), 2862–2867.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Buxton, T., Crockett, J., Moore, W., & Rissing, J. P. (1979). Protein precipitation by acetone for the analysis of polyethylene glycol in intestinal perfusion fluid. Gastroenterology, 76(4), 820–824.PubMedGoogle Scholar
  38. 38.
    Yeung, Y. G., & Stanley, E. R. (2010). Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Current Protocols in Protein Science, 59(1), 16.12. 1–16.12. 5.Google Scholar
  39. 39.
    Wessel, D. M., & Flügge, U. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry, 138(1), 141–143.PubMedGoogle Scholar
  40. 40.
    Arnold, U., & Ulbrich-Hofmann, R. (1999). Quantitative protein precipitation from guanidine hydrochloride-containing solutions by sodium deoxycholate/trichloroacetic acid. Analytical Biochemistry, 271(2), 197–199.PubMedGoogle Scholar
  41. 41.
    Bensadoun, A., & Weinstein, D. (1976). Assay of proteins in the presence of interfering materials. Analytical Biochemistry, 70(1), 241–250.PubMedGoogle Scholar
  42. 42.
    Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 83(2), 346–356.PubMedGoogle Scholar
  43. 43.
    Yeung, Y.-G., Nieves, E., Angeletti, R. H., & Stanley, E. R. (2008). Removal of detergents from protein digests for mass spectrometry analysis. Analytical Biochemistry, 382(2), 135–137.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chevallet, M., Diemer, H., Van Dorssealer, A., Villiers, C., & Rabilloud, T. (2007). Toward a better analysis of secreted proteins: The example of the myeloid cells secretome. Proteomics, 7(11), 1757–1770.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wu, X., Xiong, E., Wang, W., Scali, M., & Cresti, M. (2014). Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nature Protocols, 9(2), 362.PubMedGoogle Scholar
  46. 46.
    Jiang, L., He, L., & Fountoulakis, M. (2004). Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Journal of Chromatography A, 1023(2), 317–320.PubMedGoogle Scholar
  47. 47.
    Burgess, R. R. (2009). Protein precipitation techniques. In Methods in enzymology (pp. 331–342). Elsevier.Google Scholar
  48. 48.
    Isaacson, T., Damasceno, C. M., Saravanan, R. S., He, Y., Catalá, C., Saladié, M., et al. (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols, 1(2), 769.PubMedGoogle Scholar
  49. 49.
    Robinson, P., Liu, J., Chen, W., & Wenzel, T. (1993). Activation of protein kinase C in vitro and in intact cells or synaptosomes determined by acetic acid extraction of MARCKS. Analytical Biochemistry, 210(1), 172–178.PubMedGoogle Scholar
  50. 50.
    Granvogl, B., Plöscher, M., & Eichacker, L. A. (2007). Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Analytical and Bioanalytical Chemistry, 389(4), 991–1002.PubMedGoogle Scholar
  51. 51.
    Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856.Google Scholar
  52. 52.
    Thakur, D., Rejtar, T., Wang, D., Bones, J., Cha, S., Clodfelder-Miller, B., et al. (2011). Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1218(45), 8168–8174.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Rabilloud, T., & Lelong, C. (2011). Two-dimensional gel electrophoresis in proteomics: A tutorial. Journal of Proteomics, 74(10), 1829–1841.PubMedGoogle Scholar
  54. 54.
    Craven, R. A., Totty, N., Harnden, P., Selby, P. J., & Banks, R. E. (2002). Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: Evaluation of tissue preparation and sample limitations. The American Journal of Pathology, 160(3), 815–822.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Weiner, A. M., Platt, T., & Weber, K. (1972). Amino-terminal sequence analysis of proteins purified on a nanomole scale by gel electrophoresis. Journal of Biological Chemistry, 247(10), 3242–3251.PubMedGoogle Scholar
  56. 56.
    Hartley, B. (1970). Strategy and tactics in protein chemistry. Biochemical Journal, 119(5), 805.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Speicher, K., Kolbas, O., Harper, S., & Speicher, D. (2000). Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. Journal of Biomolecular Techniques, 11(2), 74.PubMedGoogle Scholar
  58. 58.
    Manza, L. L., Stamer, S. L., Ham, A. J. L., Codreanu, S. G., & Liebler, D. C. (2005). Sample preparation and digestion for proteomic analyses using spin filters. Proteomics, 5(7), 1742–1745.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kanshin, E., Michnick, S., & Thibault, P. (2012). Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. In Seminars in cell & developmental biology. Elsevier.Google Scholar
  60. 60.
    Erde, J., Loo, R. R. O., & Loo, J. A. (2014). Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. Journal of Proteome Research, 13(4), 1885–1895.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Wiśniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359.PubMedGoogle Scholar
  62. 62.
    Wisniewski, J. R., & Mann, M. (2009). Spin filter-based sample preparation for shotgun proteomics reply. Nature Methods, 6(11), 785–786.Google Scholar
  63. 63.
    Eggler, A. L., Luo, Y., Van Breemen, R. B., & Mesecar, A. D. (2007). Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent. Chemical Research in Toxicology, 20(12), 1878–1884.PubMedGoogle Scholar
  64. 64.
    Wisniewski, J. R., Ostasiewicz, P., & Mann, M. (2011). High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. Journal of Proteome Research, 10(7), 3040–3049.PubMedGoogle Scholar
  65. 65.
    Krause, F. (2006). Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (membrane) protein complexes and supercomplexes. Electrophoresis, 27(13), 2759–2781.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Schagger, H., & von Jagow, G. (1991). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Analytical Biochemistry, 199(2), 223–231.Google Scholar
  67. 67.
    Anderson, L. E., & McClure, W. O. (1973). An improved scintillation cocktail of high-solubilizing power. Analytical Biochemistry, 51(1), 173–179.PubMedGoogle Scholar
  68. 68.
    O’Connell, P. B., & Brady, C. J. (1976). Polyacrylamide gels with modified cross-linkages. Analytical Biochemistry, 76(l), 63–73.PubMedGoogle Scholar
  69. 69.
    Hansen, J. N. (1976). Electrophoresis of ribonucleic acid on a polyacrylamide gel which contains disulfide cross-linkages. Analytical Biochemistry, 76(l), 37–44.PubMedGoogle Scholar
  70. 70.
    Bornemann, S., Rietschel, B., Baltruschat, S., Karas, M., & Meyer, B. (2010). A novel polyacrylamide gel system for proteomic use offering controllable pore expansion by crosslinker cleavage. Electrophoresis, 31(4), 585–592.PubMedGoogle Scholar
  71. 71.
    Wei, J., Buriak, J. M., & Siuzdak, G. (1999). Desorption-ionization mass spectrometry on porous silicon. Nature, 399(6733), 243–246.PubMedGoogle Scholar
  72. 72.
    Ong, S.-E., & Mann, M. (2005). Mass spectrometry–based proteomics turns quantitative. Nature Chemical Biology, 1(5), 252.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Bantscheff, M., Lemeer, S., Savitski, M. M., & Kuster, B. (2012). Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present. Analytical and Bioanalytical Chemistry, 404(4), 939–965.PubMedGoogle Scholar
  74. 74.
    Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., & Kuster, B. (2007). Quantitative mass spectrometry in proteomics: A critical review. Analytical and Bioanalytical Chemistry, 389(4), 1017–1031.Google Scholar
  75. 75.
    Saito, A., Nagasaki, M., Oyama, M., Kozuka-Hata, H., Semba, K., Sugano, S., et al. (2007). AYUMS: An algorithm for completely automatic quantitation based on LC-MS/MS proteome data and its application to the analysis of signal transduction. BMC Bioinformatics, 8(1), 15.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Perkins, D. N., Pappin, D. J., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis: An International Journal, 20(18), 3551–3567.Google Scholar
  77. 77.
    Eng, J. K., McCormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry, 5(11), 976–989.Google Scholar
  78. 78.
    Craig, R., & Beavis, R. C. (2004). TANDEM: Matching proteins with tandem mass spectra. Bioinformatics, 20(9), 1466–1467.PubMedGoogle Scholar
  79. 79.
    Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., et al. (2004). Open mass spectrometry search algorithm. Journal of Proteome Research, 3(5), 958–964.PubMedGoogle Scholar
  80. 80.
    Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207.Google Scholar
  81. 81.
    Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., & Mann, M. (2011). Andromeda: A peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10(4), 1794–1805.PubMedGoogle Scholar
  82. 82.
    Yates, J. R., Ruse, C. I., & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annual Review of Biomedical Engineering, 11, 49–79.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tabb, D. L., McDonald, W. H., & Yates 3rd, J. R. (2002). DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. Journal of Proteome Research, 1(1), 21–26.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Craig, R., & Beavis, R. C. (2003). A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Communications in Mass Spectrometry, 17(20), 2310–2316.PubMedGoogle Scholar
  85. 85.
    Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., et al. (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnology, 22(11), 1459–1466.PubMedGoogle Scholar
  86. 86.
    Deutsch, E. W., Lam, H., & Aebersold, R. (2008). Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiological Genomics, 33(1), 18–25.PubMedGoogle Scholar
  87. 87.
    Deutsch, E. (2008). mzML: A single, unifying data format for mass spectrometer output. Proteomics, 8(14), 2776–2777.PubMedGoogle Scholar
  88. 88.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., et al. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520–525.PubMedGoogle Scholar
  89. 89.
    Jung, K., Gannoun, A., Sitek, B., Meyer, H. E., Stühler, K., & Urfer, W. (2005). Analysis of dynamic protein expression data. RevStat-Statistical Journal, 3, 99–111.Google Scholar
  90. 90.
    Brownridge, P., & Beynon, R. J. (2011). The importance of the digest: Proteolysis and absolute quantification in proteomics. Methods, 54(4), 351–360.PubMedGoogle Scholar
  91. 91.
    Lawless, C., & Hubbard, S. J. (2012). Prediction of missed proteolytic cleavages for the selection of surrogate peptides for quantitative proteomics. Omics: A Journal of Integrative Biology, 16(9), 449–456.PubMedGoogle Scholar
  92. 92.
    Lenz, E. M., Bright, J., Knight, R., Westwood, F. R., Davies, D., Major, H., et al. (2005). Metabonomics with 1H-NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat. Biomarkers, 10(2–3), 173–187.PubMedGoogle Scholar
  93. 93.
    Kussmann, M., Rezzi, S., & Daniel, H. (2008). Profiling techniques in nutrition and health research. Current Opinion in Biotechnology, 19(2), 83–99.PubMedGoogle Scholar
  94. 94.
    Lescuyer, P., Hochstrasser, D., & Rabilloud, T. (2007). How shall we use the proteomics toolbox for biomarker discovery? Journal of Proteome Research, 6(9), 3371–3376.PubMedGoogle Scholar
  95. 95.
    Surinova, S., Schiess, R., Huttenhain, R., Cerciello, F., Wollscheid, B., & Aebersold, R. (2011). On the development of plasma protein biomarkers. Journal of Proteome Research, 10(1), 5–16.PubMedGoogle Scholar
  96. 96.
    Drake, R. R., Cazares, L. H., Jones, E. E., Fuller, T. W., Semmes, O. J., & Laronga, C. (2011). Challenges to developing proteomic-based breast cancer diagnostics. OMICS, 15(5), 251–259.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Cima, I., Schiess, R., Wild, P., Kaelin, M., Schüffler, P., Lange, V., et al. (2011). Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer. Proceedings of the National Academy of Sciences, 201013699.Google Scholar
  98. 98.
    Rifai, N., Gillette, M. A., & Carr, S. A. (2006). Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nature Biotechnology, 24(8), 971.PubMedGoogle Scholar
  99. 99.
    Zhang, H., Liu, T., Zhang, Z., Payne, S. H., Zhang, B., McDermott, J. E., et al. (2016). Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell, 166(3), 755–765.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Mertins, P., Mani, D., Ruggles, K. V., Gillette, M. A., Clauser, K. R., Wang, P., et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534(7605), 55.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Liu, Y., Buil, A., Collins, B. C., Gillet, L. C., Blum, L. C., Cheng, L. Y., et al. (2015). Quantitative variability of 342 plasma proteins in a human twin population. Molecular Systems Biology, 11(2), 786.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Woods, A. G., Sokolowska, I., & Darie, C. C. (2012). Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Biochemical and Biophysical Research Communications, 419(2), 305–308.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Devika Channaveerappa
    • 1
  • Armand G. Ngounou Wetie
    • 1
  • Costel C. Darie
    • 1
    Email author
  1. 1.Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamUSA

Personalised recommendations