Non-targeted Screening in Environmental Monitoring Programs

  • Bernard S. CrimminsEmail author
  • Thomas M. Holsen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Contaminant monitoring programs have been tasked with understanding the fate and transport of toxic chemicals in the environment. Mass spectrometry based methods have traditionally been developed to maximize sensitivity and accuracy of a select set of target compounds. As mass spectrometry methods have advanced, so has the breadth of questions proposed by environmental chemists. Incorporating these methods in chemical monitoring programs provides large data sets to explore the effects of complex mixtures on environmental systems.


Non-targeted Targeted High resolution mass spectrometry Emerging contaminants 



Capillary electrophoresis


Collision induced dissociation


Environment and Climate Change Canada


Electron capture detector


Electron capture negative ionization


Fish Contaminants Monitoring and Surveillance Program


Gas chromatography


Great Lakes Fish Monitoring and Surveillance Program


Great Lakes Water Quality Agreement


Inductively coupled plasma mass spectrometer


Ion exchange chromatography


Liquid chromatograph


Long range atmospheric transport




Nuclear magnetic resonance


Non-targeted screening


Persistent, bioaccumulative and/or toxic


Polyfluoroalkyl substances




Tandem quadrupole


Registration, Evaluation, Authorization and Restriction of Chemicals


Reverse phase chromatography


Size-exclusion chromatography


Thermal ionization mass spectrometry


Time of flight



The authors acknowledge partial funding from the U.S. Environmental Protection Agency Great Lakes Fish Monitoring and Surveillance Program under grant number GL-00E01505. The authors thank the US EPA Program Manager Elizabeth Murphy. Although a portion of the research described in this chapter were funded by the US EPA, the content does not reflect or imply the views of the US EPA and no endorsement of the views presented should be inferred.


  1. 1.
    Dawson, P. H. (2013). Mass spectrometery and its applications (p. 345). New York, NY: Elseiver.Google Scholar
  2. 2.
    Oo, W. (Ed.). (1995). National primary drinking water regulations. Washington, DC: EPA.Google Scholar
  3. 3.
    Oo, W. (Ed.). (1994). Method 1613: Tetra-through octachlorinated dioxins and furans by isotope dilution HRGC/HRMS. Washington, DC: EPA U.Google Scholar
  4. 4.
    Paul, W., & Steinwedel, H. (1953). A new mass spectrometer without a magnetic field. Zeitschrift fuer Naturforschung, 8a, 448–450.Google Scholar
  5. 5.
    Campana, J. E. (1980). Elementary theory of the quadrupole mass filter. International Journal of Mass Spectrometry and Ion Physics, 33(2), 101–117.Google Scholar
  6. 6.
    Schmidt, L. J., & Hesselberg, R. J. (1992). A mass spectroscopic method for analysis of AHH-inducing and other polychlorinated biphenyl congeners and selected pesticides in fish. Archives of Environmental Contamination and Toxicology, 23(1), 37–44.PubMedGoogle Scholar
  7. 7.
    Yost, R. A. (1978). Selected ion fragmentation with a tandem quadrupole mass spectrometer. Journal of the American Chemical Society, 100(7), 2274.Google Scholar
  8. 8.
    Johnson, J. V., & Yost, R. A. (1985). Tandem mass spectrometry for trace analysis. Analytical Chemistry, 57(7).Google Scholar
  9. 9.
    Johnson, J. V., & Yost, R. A. (1990). Tandem-in-space and tandem-in-time mass spectrometry: Triple quadrupoles and quadrupole ion traps. Analytical Chemistry, 62(20), 2162.Google Scholar
  10. 10.
    Yost, R. A. (1983). Tandem mass spectrometry (MS/MS) instrumentation. Mass Spectrometry Reviews, 2(1), 1.Google Scholar
  11. 11.
    Jahnke, A., & Berger, U. (2009). Trace analysis of per- and polyfluorinated alkyl substances in various matrices—How do current methods perform? Journal of Chromatography A, 1216(3), 410–421.PubMedGoogle Scholar
  12. 12.
    Valsecchi, S., Rusconi, M., & Polesello, S. (2013). Determination of perfluorinated compounds in aquatic organisms: A review. Analytical and Bioanalytical Chemistry, 405(1), 143–157.PubMedGoogle Scholar
  13. 13.
    L’Homme, B., Scholl, G., Eppe, G., & Focant, J. F. (2015). Validation of a gas chromatography–triple quadrupole mass spectrometry method for confirmatory analysis of dioxins and dioxin-like polychlorobiphenyls in feed following new EU Regulation 709/2014. Journal of Chromatography A, 1376, 149–158.PubMedGoogle Scholar
  14. 14.
    García-Bermejo, Á., Ábalos, M., Sauló, J., Abad, E., González, M. J., & Gómara, B. (2015). Triple quadrupole tandem mass spectrometry: A real alternative to high resolution magnetic sector instrument for the analysis of polychlorinated dibenzo-p-dioxins, furans and dioxin-like polychlorinated biphenyls. Analytica Chimica Acta, 889, 156–165.PubMedGoogle Scholar
  15. 15.
    Wiley, W. C., & McLaren, I. H. (1955). Time-of-flight mass spectrometer with improved resolution. Review of Scientific Instruments, 26(12), 1150–1157.Google Scholar
  16. 16.
    Guilhaus, M., Selby, D., & Mlynski, V. (2000). Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrometry Reviews, 19(2), 65–107.PubMedGoogle Scholar
  17. 17.
    Cotter, R. J. (1999). Peer reviewed: The new time-of-flight mass spectrometry. Analytical Chemistry, 71(13).PubMedGoogle Scholar
  18. 18.
    Crimmins, B. S., Xia, X., Hopke, P. K., & Holsen, T. M. (2014). A targeted/non-targeted screening method for perfluoroalkyl carboxylic acids and sulfonates in whole fish using quadrupole time-of-flight mass spectrometry and MSe. Analytical and Bioanalytical Chemistry, 406(5), 1471–1480.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Newton, S., McMahen, R., Stoeckel, J. A., Chislock, M., Lindstrom, A., & Strynar, M. (2017). Novel polyfluorinated compounds identified using high resolution mass spectrometry downstream of manufacturing facilities near Decatur, Alabama. Environmental Science & Technology, 51(3), 1544–1552.Google Scholar
  20. 20.
    Fernando, S., Renaguli, A., Milligan, M., Pagano, J. J., Hopke, P. K., Holsen, T. M., et al. (2018). Comprehensive analysis of the Great Lakes top predator fish for novel halogenated organic contaminants by GCxGC-HR-ToF mass spectrometry. Environmental Science & Technology.Google Scholar
  21. 21.
    Pitarch, E., Cervera, M. I., Portolés, T., Ibáñez, M., Barreda, M., Renau-Pruñonosa, A., et al. (2016). Comprehensive monitoring of organic micro-pollutants in surface and groundwater in the surrounding of a solid-waste treatment plant of Castellón, Spain. Science of the Total Environment, 548-549(Supplement C), 211–220.PubMedGoogle Scholar
  22. 22.
    Lommen, A., van der Weg, G., van Engelen, M. C., Bor, G., Hoogenboom, L. A. P., & Nielen, M. W. F. (2007). An untargeted metabolomics approach to contaminant analysis: Pinpointing potential unknown compounds. Analytica Chimica Acta, 584(1), 43–49.PubMedGoogle Scholar
  23. 23.
    Kingdon, K. H. (1923). A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Physical Review Series II, 21(4), 408.Google Scholar
  24. 24.
    Makarov, A. (2000). Electrostatic axially harmonic orbital trapping: A high-performance technique of mass analysis. Analytical Chemistry, 72(6), 1156–1162.PubMedGoogle Scholar
  25. 25.
    Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Graham Cooks, R. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40(4), 430–443.PubMedGoogle Scholar
  26. 26.
    Peterson, A. C., Hauschild, J.-P., Quarmby, S. T., Krumwiede, D., Lange, O., Lemke, R. A. S., et al. (2014). Development of a GC/quadrupole-orbitrap mass spectrometer, part I: Design and characterization. Analytical Chemistry, 86(20), 10036–10043.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Peterson, A. C., McAlister, G. C., Quarmby, S. T., Griep-Raming, J., & Coon, J. J. (2010). Development and characterization of a GC-enabled QLT-Orbitrap for high-resolution and high-mass accuracy GC/MS. Analytical Chemistry, 82(20), 8618–8628.PubMedGoogle Scholar
  28. 28.
    Richardson, S. D. (2008). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 80(12), 4373–4402.PubMedGoogle Scholar
  29. 29.
    Richardson, S. D. (2000). Environmental mass spectrometry. Analytical Chemistry, 72(18), 4477–4496.PubMedGoogle Scholar
  30. 30.
    Richardson, S. D. (2012). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 84(2), 747–778.PubMedGoogle Scholar
  31. 31.
    Richardson, S. D. (2010). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 82(12), 4742–4774.PubMedGoogle Scholar
  32. 32.
    Richardson, S. D. (2002). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 74(12), 2719–2742.PubMedGoogle Scholar
  33. 33.
    Quinn, F. H. (1992). Hydraulic residence times for the Laurentian Great Lakes. Journal of Great Lakes Research, 18(1), 22–28.Google Scholar
  34. 34.
    Burdick, G. E., Harris, E. J., Dean, H. J., Walker, T. M., Skea, J., & Colby, D. (1964). The accumulation of DDT in lake trout and the effect on reproduction. Transactions of the American Fisheries Society, 93(2), 127–136.Google Scholar
  35. 35.
    Reinert, R. E. (1969). Insecticides and the Great Lakes. Limnos, 2(3), 3–9.Google Scholar
  36. 36.
    Veith, G. D., Kuehl, D. W., Puglisi, F. A., Glass, G. E., & Eaton, J. G. (1977). Residues of PCB’s and DDT in the western Lake Superior ecosystem. Archives of Environmental Contamination and Toxicology, 5(1), 487–499.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Porter, R. D., & Wiemeyer, S. N. (1969). Dieldrin and DDT: Effects on sparrow hawk eggshells and reproduction. Science, 165(3889), 199–200.PubMedGoogle Scholar
  38. 38.
    Woodwell, G. M., Wurster, C. F., & Isaacson, P. A. (1967). DDT residues in an East Coast Estuary: A case of biological concentration of a persistent insecticide. Science, 156(3776), 821–824.PubMedGoogle Scholar
  39. 39.
    Woodwell, G. M. (1967). Toxic substances and ecological cycles. Scientific American, 216(3), 24–31.PubMedGoogle Scholar
  40. 40.
    Peakall, D. B. (1970). Pesticides and the reproduction of birds. Scientific American, 222(4), 72–83.PubMedGoogle Scholar
  41. 41.
    Reichel, W. L. (1969). Residues in two bald eagles suspected of pesticide poisoning. Bulletin of Environmental Contamination and Toxicology, 4(1), 24.PubMedGoogle Scholar
  42. 42.
    Swain, W. R. (1978). Chlorinated organic residues in fish, water, and precipitation from the vicinity of Isle Royale, Lake Superior. Journal of Great Lakes Research, 4(3), 398–407.Google Scholar
  43. 43.
    Eisenreich, S. J. (1981). Airborne organic contaminants in the Great Lakes ecosystem. Environmental Science and Technology, 15(1), 30.Google Scholar
  44. 44.
    Baker, J. E. (1990). Concentrations and fluxes of polycyclic aromatic hydrocarbons and polychlorinated biphenyls across the air-water interface of Lake Superior. Environmental Science and Technology, 24(3), 342.Google Scholar
  45. 45.
    Hoff, R. M. (1996). Atmospheric deposition of toxic chemicals to the Great Lakes: A review of data through 1994. Atmospheric Environment, 30(20), 3505.Google Scholar
  46. 46.
    Buehler, S. S. (2002). Peer reviewed: The Great Lakes’ integrated atmospheric deposition network. Environmental Science and Technology, 36(17).Google Scholar
  47. 47.
    Venier, M., Salamova, A., & Hites, R. A. (2016). Temporal trends of persistent organic pollutant concentrations in precipitation around the Great Lakes. Environmental Pollution, 217, 143–148.PubMedGoogle Scholar
  48. 48.
    Muir, D., & Sverko, E. (2006). Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: A critical appraisal. Analytical and Bioanalytical Chemistry, 386(4), 769–789.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Frame, G. (1997). Peer reviewed: Congener-specific PCB analysis. Analytical Chemistry, 69(15).Google Scholar
  50. 50.
    Frame, G. M., Cochran, J. W., & Bøwadt, S. S. (1996). Complete PCB congener distributions for 17 aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. Journal of High Resolution Chromatography, 19(12), 657–668.Google Scholar
  51. 51.
    Cochran, J. W., & Frame, G. M. (1999). Recent developments in the high-resolution gas chromatography of polychlorinated biphenyls. Journal of Chromatography A, 843(1), 323–368.PubMedGoogle Scholar
  52. 52.
    Hess, P., de Boer, J., Cofino, W. P., Leonards, P. E. G., & Wells, D. E. (1995). Critical review of the analysis of non- and mono-ortho-chlorobiphenyls. Journal of Chromatography A, 703(1), 417–465.Google Scholar
  53. 53.
    Chen, D., Letcher, R. J., Gauthier, L. T., Chu, S., McCrindle, R., & Potter, D. (2011). Novel methoxylated polybrominated diphenoxybenzene congeners and possible sources in herring gull eggs from the Laurentian Great Lakes of North America. Environmental Science & Technology, 45(22), 9523–9530.Google Scholar
  54. 54.
    Hoh, E., & Zhu, H. R. A. (2006). Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environmental Science & Technology, 40(4), 1184–1189.Google Scholar
  55. 55.
    Shen, L., Reiner, E. J., MacPherson, K. A., Kolic, T. M., Helm, P. A., Richman, L. A., et al. (2011). Dechloranes 602, 603, 604, Dechlorane Plus, and Chlordene Plus, a newly detected analogue, in tributary sediments of the Laurentian Great Lakes. Environmental Science & Technology, 45(2), 693–699.Google Scholar
  56. 56.
    Kannan, K., Franson, J. C., Bowerman, W. W., Hansen, K. J., Jones, P. D., & Giesy, J. P. (2001). Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses. Environmental Science & Technology, 35(15), 3065–3070.Google Scholar
  57. 57.
    Giesy, J. P., & Kannan, K. (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 35(7), 1339–1342.Google Scholar
  58. 58.
    Olsen, G. W., Burris, J. M., Mandel, J. H., & Zobel, L. R. (1999). Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. Journal of Occupational and Environmental Medicine, 41(9), 799–806.PubMedGoogle Scholar
  59. 59.
    Olsen, G. W., Ellefson, M. E., Mair, D. C., Church, T. R., Goldberg, C. L., & Herron, R. M. (2011). Analysis of a homologous series of perfluorocarboxylates from American Red Cross adult blood donors, 2000–2001 and 2006. Environmental Science & Technology, 45.Google Scholar
  60. 60.
    Furdui, V. I., Stock, N. L., Ellis, D. A., Butt, C. M., Whittle, D. M., Crozier, P. W., et al. (2007). Spatial distribution of perfluoroalkyl contaminants in lake trout from the Great Lakes. Environmental Science & Technology, 41(5), 1554–1559.Google Scholar
  61. 61.
    Butt, C. M., Berger, U., Bossi, R., & Tomy, G. T. (2010). Levels and trends of poly- and perfluorinated compounds in the arctic environment. Science of the Total Environment, 408(15), 2936–2965.PubMedGoogle Scholar
  62. 62.
    Houde, M., De Silva, A. O., Muir, D. C. G., & Letcher, R. J. (2011). Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environmental Science & Technology, 45(19), 7962–7973.Google Scholar
  63. 63.
    Butt, C. M., Muir, D. C. G., & Mabury, S. A. (2014). Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: A review. Environmental Toxicology and Chemistry, 33(2), 243–267.PubMedGoogle Scholar
  64. 64.
    Muir, D. C. G., & Howard, P. H. (2006). Are there other persistent organic pollutants? A challenge for environmental chemists. Environmental Science & Technology, 40(23), 7157–7166.Google Scholar
  65. 65.
    Howard, P. H., & Muir, D. C. G. (2011). Identifying new persistent and bioaccumulative organics among chemicals in commerce II: Pharmaceuticals. Environmental Science & Technology, 45(16), 6938–6946.Google Scholar
  66. 66.
    Howard, P. H., & Muir, D. C. G. (2010). Identifying new persistent and bioaccumulative organics among chemicals in commerce. Environmental Science & Technology, 44(7), 2277–2285.Google Scholar
  67. 67.
    Howard, P. H., & Muir, D. C. G. (2013). Identifying new persistent and bioaccumulative organics among chemicals in commerce. III: Byproducts, impurities, and transformation products. Environmental Science & Technology, 47(10), 5259–5266.Google Scholar
  68. 68.
    Strempel, S., Scheringer, M., Ng, C. A., & Hungerbühler, K. (2012). Screening for PBT chemicals among the “Existing” and “New” chemicals of the EU. Environmental Science & Technology, 46(11), 5680–5687.Google Scholar
  69. 69.
    Stenberg, M., Linusson, A., Tysklind, M., & Andersson, P. L. (2009). A multivariate chemical map of industrial chemicals—Assessment of various protocols for identification of chemicals of potential concern. Chemosphere, 76(7), 878–884.PubMedGoogle Scholar
  70. 70.
    Crimmins, B. S., McCarty, H. B., Fernando, S., Milligan, M. S., Pagano, J. J., Holsen, T. M., et al. (2018). Commentary: Integrating non-targeted and targeted chemical screening in Great Lakes fish monitoring programs. Journal of Great Lakes Research.Google Scholar
  71. 71.
    Cajka, T., & Fiehn, O. (2016). Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Analytical Chemistry, 88(1), 524–545.PubMedGoogle Scholar
  72. 72.
    Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78(13), 4430–4442.PubMedGoogle Scholar
  73. 73.
    Cao, D., Guo, J., Wang, Y., Li, Z., Liang, K., Corcoran, M. B., et al. (2017). Organophosphate esters in sediment of the Great Lakes. Environmental Science & Technology, 51(3), 1441–1449.Google Scholar
  74. 74.
    Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. TRAC Trends in Analytical Chemistry, 24(4), 285–294.Google Scholar
  75. 75.
    Corcoran, O., & Spraul, M. (2003). LC–NMR–MS in drug discovery. Drug Discovery Today, 8(14), 624–631.PubMedGoogle Scholar
  76. 76.
    Chace, D. H., Sherwin, J. E., Hillman, S. L., Lorey, F., & Cunningham, G. C. (1998). Use of phenylalanine-to-tyrosine ratio determined by tandem mass spectrometry to improve newborn screening for phenylketonuria of early discharge specimens collected in the first 24 hours. Clinical Chemistry, 44(12), 2405–2409.PubMedGoogle Scholar
  77. 77.
    Bartel, J., Krumsiek, J., & Theis, F. J. (2013). Statistical methods for the analysis of high-throughput metabolomics datA. Computational and Structural Biotechnology Journal, 4(5), e201301009.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Gika, H. G., Wilson, I. D., & Theodoridis, G. A. (2014). LC-MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 966, 1–6.PubMedGoogle Scholar
  79. 79.
    Theodoridis, G. A., Gika, H. G., Want, E. J., & Wilson, I. D. (2012). Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Analytica Chimica Acta, 711, 7–16.PubMedGoogle Scholar
  80. 80.
    Hesselberg, R. J., & Seelye, J. G. (1977). Identification of organic compounds in Great LAKES Fishes by gas chromatography/mass spectrometry: 1977. Ann Arbor, MI: U.S. Fish and Wildlife Service, Great Lakes Fishery Laboratory.Google Scholar
  81. 81.
    Bobeldijk, I., Vissers, J. P. C., Kearney, G., Major, H., & van Leerdam, J. A. (2001). Screening and identification of unknown contaminants in water with liquid chromatography and quadrupole-orthogonal acceleration-time-of-flight tandem mass spectrometry. Journal of Chromatography A, 929(1), 63–74.PubMedGoogle Scholar
  82. 82.
    Crimmins, B. S., Pagano, J. J., Milligan, M. S., & Holsen, T. M. (2013). Environmental mass spectrometry in the North American Great Lakes Fish Monitoring and Surveillance Program. Australian Journal of Chemistry, 66(7), 798–806.Google Scholar
  83. 83.
    Jobst, K. J., Shen, L., Reiner, E. J., Taguchi, V. Y., Helm, P. A., McCrindle, R., et al. (2013). The use of mass defect plots for the identification of (novel) halogenated contaminants in the environment. Analytical and Bioanalytical Chemistry, 405(10), 3289–3297.PubMedGoogle Scholar
  84. 84.
    Myers, A. L., Jobst, K. J., Mabury, S. A., & Reiner, E. J. (2014). Using mass defect plots as a discovery tool to identify novel fluoropolymer thermal decomposition products. Journal of Mass Spectrometry, 49(4), 291–296.PubMedGoogle Scholar
  85. 85.
    Myers, A. L., Watson-Leung, T., Jobst, K. J., Shen, L., Besevic, S., Organtini, K., et al. (2014). Complementary nontargeted and targeted mass spectrometry techniques to determine bioaccumulation of halogenated contaminants in freshwater species. Environmental Science & Technology, 48(23), 13844–13854.Google Scholar
  86. 86.
    Peng, H., Chen, C., Cantin, J., Saunders, D. M. V., Sun, J., Tang, S., et al. (2016). Untargeted screening and distribution of organo-bromine compounds in sediments of lake michigan. Environmental Science and Technology, 50(1), 321–330.PubMedGoogle Scholar
  87. 87.
    Fakouri Baygi, S., Crimmins, B. S., Hopke, P. K., & Holsen, T. M. (2016). Comprehensive emerging chemical discovery: novel polyfluorinated compounds in Lake Michigan Trout. Environmental Science and Technology, 50(17), 9460–9468.PubMedGoogle Scholar
  88. 88.
    Pena-Abaurrea, M., Jobst, K. J., Ruffolo, R., Shen, L., McCrindle, R., Helm, P. A., et al. (2014). Identification of potential novel bioaccumulative and persistent chemicals in sediments from Ontario (Canada) using scripting approaches with GC×GC-TOF MS analysis. Environmental Science and Technology, 48(16), 9591–9599.PubMedGoogle Scholar
  89. 89.
    Krauss, M., Singer, H., & Hollender, J. (2010). LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 397(3), 943–951.PubMedGoogle Scholar
  90. 90.
    Andra, S. S., Austin, C., Patel, D., Dolios, G., Awawda, M., & Arora, M. (2017). Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. Environment International, 100.(Supplement C, 32–61.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Farré, M., Kantiani, L., Petrovic, M., Pérez, S., & Barceló, D. (2012). Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. Journal of Chromatography A, 1259.(Supplement C, 86–99.PubMedGoogle Scholar
  92. 92.
    Petrovic, M., Farré, M., Alda, M. L., Perez, S., Postigo, C., & Köck, M. (2010). Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. Journal of Chromatography. A, 1217.Google Scholar
  93. 93.
    Niu, W., Knight, E., Xia, Q., & McGarvey, B. D. (2014). Comparative evaluation of eight software programs for alignment of gas chromatography–mass spectrometry chromatograms in metabolomics experiments. Journal of Chromatography A, 1374, 199–206.PubMedGoogle Scholar
  94. 94.
    Castillo, S., Gopalacharyulu, P., Yetukuri, L., & Orešič, M. (2011). Algorithms and tools for the preprocessing of LC–MS metabolomics data. Chemometrics and Intelligent Laboratory Systems, 108(1), 23–32.Google Scholar
  95. 95.
    Coble, J. B., & Fraga, C. G. (2014). Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. Journal of Chromatography A, 1358, 155–164.PubMedGoogle Scholar
  96. 96.
    Wehrens, R., Weingart, G., & Mattivi, F. (2014). metaMS: An open-source pipeline for GC–MS-based untargeted metabolomics. Journal of Chromatography B, 966, 109–116.Google Scholar
  97. 97.
    Athersuch, T. (2016). Metabolome analyses in exposome studies: Profiling methods for a vast chemical space. Archives of Biochemistry and Biophysics, 589, 177–186.PubMedGoogle Scholar
  98. 98.
    Mahieu, N. G., Genenbacher, J. L., & Patti, G. J. (2016). A roadmap for the XCMS family of software solutions in metabolomics. Current Opinion in Chemical Biology, 30, 87–93.PubMedGoogle Scholar
  99. 99.
    Vinaixa, M., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., & Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TRAC Trends in Analytical Chemistry, 78, 23–35.Google Scholar
  100. 100.
    Yi, L., Dong, N., Yun, Y., Deng, B., Ren, D., Liu, S., et al. (2016). Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Analytica Chimica Acta, 914, 17–34.PubMedGoogle Scholar
  101. 101.
    Baira, E., Siapi, E., Zoumpoulakis, P., Stelios, G. D., Skaltsounis, A.-L., & Gikas, E. (2017). Post-acquisition spectral stitching. An alternative approach for data processing in untargeted metabolomics by UHPLC-ESI(−)-HRMS. Journal of Chromatography B, 1047, 106–114.Google Scholar
  102. 102.
    Fenaille, F., Barbier Saint-Hilaire, P., Rousseau, K., & Junot, C. (2017). Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand. Journal of Chromatography A, 1526, 1–12.PubMedGoogle Scholar
  103. 103.
    Gewurtz, S. B., Backus, S. M., Bhavsar, S. P., McGoldrick, D. J., de Solla, S. R., & Murphy, E. W. (2011). Contaminant biomonitoring programs in the Great Lakes region: Review of approaches and critical factors. Environmental Reviews, 19(NA), 162–184.Google Scholar
  104. 104.
    Gibbs JP, Eduard E. Program monitor: Estimating the statistcal power of ecological monitoring programs. Version 11.0.0. 2010.Google Scholar
  105. 105.
    Plassmann, M. M., Tengstrand, E., Åberg, K. M., & Benskin, J. P. (2016). Non-target time trend screening: A data reduction strategy for detecting emerging contaminants in biological samples. Analytical and Bioanalytical Chemistry, 408(16), 4203–4208.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Chiaia-Hernández, A. C., Günthardt, B. F., Frey, M. P., & Hollender, J. (2017). Unravelling contaminants in the Anthropocene using statistical analysis of liquid chromatography–High-resolution mass spectrometry nontarget screening data recorded in lake sediments. Environmental Science and Technology, 51(21), 12547–12556.PubMedGoogle Scholar
  107. 107.
    Hollender, J., Schymanski, E. L., Singer, H. P., & Ferguson, P. L. (2017). Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? Environmental Science and Technology, 51(20), 11505–11512.PubMedGoogle Scholar
  108. 108.
    Chiaia-Hernandez, A. C., Krauss, M., & Hollender, J. (2013). Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environmental Science and Technology, 47(2), 976–986.PubMedGoogle Scholar
  109. 109.
    Yu, Z., Huang, H., Reim, A., Charles, P. D., Northage, A., Jackson, D., et al. (2017). Optimizing 2D gas chromatography mass spectrometry for robust tissue, serum and urine metabolite profiling. Talanta, 165, 685–691.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Mackintosh, S. A., Dodder, N. G., Shaul, N. J., Aluwihare, L. I., Maruya, K. A., Chivers, S. J., et al. (2016). Newly Identified DDT-related compounds accumulating in Southern California bottlenose dolphins. Environmental Science and Technology, 50(22), 12129–12137.PubMedGoogle Scholar
  111. 111.
    Schymanski, E. L., Singer, H. P., Slobodnik, J., Ipolyi, I. M., Oswald, P., Krauss, M., et al. (2015). Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 407(21), 6237–6255.PubMedGoogle Scholar
  112. 112.
    Milman, B. L., & Zhurkovich, I. K. (2016). Mass spectral libraries: A statistical review of the visible use. TRAC Trends in Analytical Chemistry, 80.(Supplement C, 636–640.Google Scholar
  113. 113.
    Dudzik, D., Barbas-Bernardos, C., García, A., & Barbas, C. (2018). Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. Journal of Pharmaceutical and Biomedical Analysis, 147, 149–173.PubMedGoogle Scholar
  114. 114.
    Simón-Manso, Y., Lowenthal, M. S., Kilpatrick, L. E., Sampson, M. L., Telu, K. H., Rudnick, P. A., et al. (2013). Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and Clinical Laboratory Analyses, Libraries, and Web-Based Resources. Analytical Chemistry, 85(24), 11725–11731.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringClarkson UniversityPotsdamUSA
  2. 2.AEACS, LLCNew KensingtonUSA

Personalised recommendations