Detection of Biomedically Relevant Stilbenes from Wines by Mass Spectrometry

  • Veronica Andrei
  • Dana Copolovici
  • Florentina-Daniela Munteanu
  • Armand G. Ngounou Wetie
  • Iuliana Mihai
  • Costel C. Darie
  • Alina VasilescuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Stilbenes represent a class of compounds with a common 1,2-diphenylethylene backbone that have shown extraordinary potential in the biomedical field. As the most well-known example, resveratrol proved to have anti-aging effects and significant potential in the fight against cardiovascular diseases and some types of cancer. Mass spectrometry is an analytical method of critical importance in all studies related to stilbenes that are important in the biomedical field. From the discovery of new natural compounds and mapping the grape metabolome up to advanced investigations of stilbenes’ potential for the protection of human health in clinical studies, mass spectrometry has provided critical analytical information. In this review we focus on various approaches related to mass spectrometry for the detection of stilbenes—such as coupling with chromatographic separation methods and direct infusion—with presentation of some illustrative applications. Clearly, the potential of mass spectrometry for assisting in the discovery of new stilbenes of biomedical importance, elucidating their mechanisms of action and quantifying minute quantities in complex matrices is far from being exhausted.


Stilbenes Antioxidant Wine Mass spectrometry 



Financial support grants of the Romanian National Authority for Scientific Research, CNDI—UEFISCDI, projects PN-II-PT-PCCA-2011-3.1-1809 (for V.A.) and PN-III-P3-3.1-PM-RO-FR-2016-0030 (for A.V. and F.-D.M.) is gratefully acknowledged.


  1. 1.
    Saikat, S., & Chakraborty, R. (2011). The role of antioxidants in human health. Oxidative Stress: Diagnostics, Prevention, and Therapy, 1083, 1–37.Google Scholar
  2. 2.
    Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339(8808), 1523–1526.Google Scholar
  3. 3.
    Nopo-Olazabal, C., Hubstenberger, J., Nopo-Olazabal, L., & Medina-Bolivar, F. (2013). Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia Michx.). Journal of Agricultural and Food Chemistry, 61(48), 11744–11758.PubMedGoogle Scholar
  4. 4.
    Jeandet, P., Delaunois, B., Conreux, A., Donnez, D., Nuzzo, V., Cordelier, S., et al. (2010). Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors, 36(5), 331–341.PubMedGoogle Scholar
  5. 5.
    Rodríguez-Cabo, T., Rodríguez, I., & Cela, R. (2012). Determination of hydroxylated stilbenes in wine by dispersive liquid–liquid microextraction followed by gas chromatography mass spectrometry. Journal of Chromatography A, 1258, 21–29.PubMedGoogle Scholar
  6. 6.
    Langcake, P., & Pryce, R. J. (1977). A new class of phytoalexins from grapevines. Experientia, 33(2), 151–152.PubMedGoogle Scholar
  7. 7.
    Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H.-L., Beal, M. F., & Gibson, G. E. (2009). Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochemistry International, 54(2), 111–118.PubMedGoogle Scholar
  8. 8.
    Valenzano, D. R., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L., & Cellerino, A. (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Current Biology, 16(3), 296–300.PubMedGoogle Scholar
  9. 9.
    Bishayee, A., Politis, T., & Darvesh, A. S. (2010). Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treatment Reviews, 36(1), 43–53.PubMedGoogle Scholar
  10. 10.
    González-Sarrías, A., Gromek, S., Niesen, D., Seeram, N. P., & Henry, G. E. (2011). Resveratrol oligomers isolated from carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. Journal of Agricultural and Food Chemistry, 59(16), 8632–8638.PubMedGoogle Scholar
  11. 11.
    Wang, K.-T., Chen, L.-G., Tseng, S.-H., Huang, J.-S., Hsieh, M.-S., & Wang, C.-C. (2011). Anti-inflammatory effects of resveratrol and oligostilbenes from Vitis thunbergii var. taiwaniana against lipopolysaccharide-induced arthritis. Journal of Agricultural and Food Chemistry, 59(8), 3649–3656.PubMedGoogle Scholar
  12. 12.
    Appeldoorn, M. M., Venema, D. P., Peters, T. H. F., Koenen, M. E., Arts, I. C. W., Vincken, J.-P., et al. (2009). Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro. Journal of Agricultural and Food Chemistry, 57(17), 7693–7699.PubMedGoogle Scholar
  13. 13.
    Tomé-Carneiro, J., Larrosa, M., González-Sarrías, A., Tomás-Barberán, F., García-Conesa, M., & Espín, J. (2013). Resveratrol and clinical trials: The crossroad from in vitro studies to human evidence. Current Pharmaceutical Design, 19(34), 6064–6093.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ko, H. S., Lee, H.-J., Kim, S.-H., & Lee, E.-O. (2012). Piceatannol suppresses breast cancer cell invasion through the inhibition of MMP-9: Involvement of PI3K/AKT and NF-κB pathways. Journal of Agricultural and Food Chemistry, 60(16), 4083–4089.PubMedGoogle Scholar
  15. 15.
    Pawlus, A. D., Sahli, R., Bisson, J., Rivière, C., Delaunay, J.-C., Richard, T., et al. (2013). Stilbenoid profiles of canes from vitis and Muscadinia species. Journal of Agricultural and Food Chemistry, 61(3), 501–511.PubMedGoogle Scholar
  16. 16.
    Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191–196.PubMedGoogle Scholar
  17. 17.
    Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444(7117), 337–342.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Berman, A. Y., Motechin, R. A., Wiesenfeld, M. Y., & Holz, M. K. (2017). The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precision Oncology, 1(1), 35.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hubbard, B. P., Gomes, A. P., Dai, H., Li, J., Case, A. W., Considine, T., et al. (2013). Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science, 339(6124), 1216–1219.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bishayee, A. (2009). Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prevention Research, 2(5), 409–418.PubMedGoogle Scholar
  21. 21.
    Moss, R., Mao, Q., Taylor, D., & Saucier, C. (2013). Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 27(16), 1815–1827.PubMedGoogle Scholar
  22. 22.
    Fernández-Marín, M. I., Guerrero, R. F., García-Parrilla, M. C., Puertas, B., Richard, T., Rodriguez-Werner, M. A., et al. (2012). Isorhapontigenin: A novel bioactive stilbene from wine grapes. Food Chemistry, 135(3), 1353–1359.PubMedGoogle Scholar
  23. 23.
    Keylor, M. H., Matsuura, B. S., & Stephenson, C. R. J. (2015). Chemistry and biology of resveratrol-derived natural products. Chemical Reviews, 115(17), 8976–9027.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gómez-Míguez, M. J., Cacho, J. F., Ferreira, V., Vicarioand, I. M., & Heredia, F. J. (2007). Volatile components of Zalema white wines. Food Chemistry, 100(4), 1464–1473.Google Scholar
  25. 25.
    Vergara, C., von Baer, D., Mardones, C., Wilkens, A., Wernekinck, K., Damm, A., et al. (2012). Stilbene levels in grape cane of different cultivars in southern Chile: Determination by HPLC-DAD-MS/MS method. Journal of Agricultural and Food Chemistry, 60(4), 929–933.PubMedGoogle Scholar
  26. 26.
    Lambert, C., Richard, T., Renouf, E., Bisson, J., Waffo-Teguo, P., Bordenave, L., et al. (2013). Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. Journal of Agricultural and Food Chemistry, 61(47), 11392–11399.PubMedGoogle Scholar
  27. 27.
    Lago-Vanzela, E. S., Da-Silva, R., Gomes, E., García-Romero, E., & Hermosín-Gutiérrez, I. (2011). Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC–DAD–ESI-MS/MS. Journal of Agricultural and Food Chemistry, 59(24), 13136–13146.PubMedGoogle Scholar
  28. 28.
    Mattivi, F., Vrhovsek, U., Malacarne, G., Masuero, D., Zulini, L., Stefanini, M., et al. (2011). Profiling of resveratrol oligomers, important stress metabolites, accumulating in the leaves of hybrid Vitis vinifera (Merzling × Teroldego) genotypes infected with Plasmopara viticola. Journal of Agricultural and Food Chemistry, 59(10), 5364–5375.PubMedGoogle Scholar
  29. 29.
    Becker, L., Bellow, S., Carré, V., Latouche, G., Poutaraud, A., & Merdinoglu, D. (2017). Correlative analysis of fluorescent phytoalexins by mass spectrometry imaging and fluorescence microscopy in grapevine leaves. Analytical Chemistry, 89(13), 7099–7106.PubMedGoogle Scholar
  30. 30.
    Martinez-Esteso, M. J., Sellés-Marchart, S., Vera-Urbina, J. C., Pedreño, M. A., & Bru-Martinez, R. (2011). DIGE analysis of proteome changes accompanying large resveratrol production by grapevine (Vitis vinifera cv. Gamay) cell cultures in response to methyl-β-cyclodextrin and methyl jasmonate elicitors. Journal of Proteomics, 74(8), 1421–1436.PubMedGoogle Scholar
  31. 31.
    Donnez, D., Kim, K.-H., Antoine, S., Conreux, A., De Luca, V., Jeandet, P., et al. (2011). Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2 L stirred bioreactor. Process Biochemistry, 46(5), 1056–1062.Google Scholar
  32. 32.
    Timperio, A. M., D’Alessandro, A., Fagioni, M., Magro, P., & Zolla, L. (2012). Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiology and Biochemistry, 50(0), 65–71.PubMedGoogle Scholar
  33. 33.
    Guerrero, R. F., Puertas, B., Jiménez, M. J., Cacho, J., & Cantos-Villar, E. (2010). Monitoring the process to obtain red wine enriched in resveratrol and piceatannol without quality loss. Food Chemistry, 122(1), 195–202.Google Scholar
  34. 34.
    Fernández-Marín, M. I., Guerrero, R. F., García-Parrilla, M. C., Puertas, B., Ramírez, P., & Cantos-Villar, E. (2013). Terroir and variety: Two key factors for obtaining stilbene-enriched grapes. Journal of Food Composition and Analysis, 31(2), 191–198.Google Scholar
  35. 35.
    Guerrero, R. F., Puertas, B., Fernández, M. I., Piñeiro, Z., & Cantos-Villar, E. (2010). UVC-treated skin-contact effect on both white wine quality and resveratrol content. Food Research International, 43(8), 2179–2185.Google Scholar
  36. 36.
    Lucini, L., Baccolo, G., Rouphael, Y., Colla, G., Bavaresco, L., & Trevisan, M. (2018). Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape (Vitis vinifera L.) bunches. Phytochemistry, 156, 1–8.PubMedGoogle Scholar
  37. 37.
    Pugajeva, I., Perkons, I., & Górnaś, P. (2018). Identification and determination of stilbenes by Q-TOF in grape skins, seeds, juice and stems. Journal of Food Composition and Analysis, 74, 44–52.Google Scholar
  38. 38.
    Atanacković, M., Petrović, A., Jović, S., Bukarica, L. G., Bursać, M., & Cvejić, J. (2012). Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chemistry, 131(2), 513–518.Google Scholar
  39. 39.
    Roldán, A., Palacios, V., Caro, I., & Pérez, L. (2010). Evolution of resveratrol and piceid contents during the industrial winemaking process of sherry wine. Journal of Agricultural and Food Chemistry, 58(7), 4268–4273.PubMedGoogle Scholar
  40. 40.
    Sawaya, A. C. H. F., Catharino, R. R., Facco, E. M. P., Fogaça, A., Godoy, H. T., Daudt, C. E., et al. (2011). Monitoring of wine aging process by electrospray ionization mass spectrometry. Food Science and Technology (Campinas), 31(3), 730–734.Google Scholar
  41. 41.
    Gatto, P., Vrhovsek, U., Muth, J., Segala, C., Romualdi, C., Fontana, P., et al. (2008). Ripening and genotype control stilbene accumulation in healthy grapes. Journal of Agricultural and Food Chemistry, 56(24), 11773–11785.PubMedGoogle Scholar
  42. 42.
    Stervbo, U., Vang, O., & Bonnesen, C. (2007). A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chemistry, 101(2), 449–457.Google Scholar
  43. 43.
    Todaro, A., Palmeri, R., Barbagallo, R. N., Pifferi, P. G., & Spagna, G. (2008). Increase of trans-resveratrol in typical Sicilian wine using β-Glucosidase from various sources. Food Chemistry, 107(4), 1570–1575.Google Scholar
  44. 44.
    Amira-Guebailia, H., Valls, J., Richard, T., Vitrac, X., Monti, J.-P., Delaunay, J.-C., et al. (2009). Centrifugal partition chromatography followed by HPLC for the isolation of cis-ε-viniferin, a resveratrol dimer newly extracted from a red Algerian wine. Food Chemistry, 113(1), 320–324.Google Scholar
  45. 45.
    Ivanova-Petropulos, V., Hermosin-Gutierrez, I., Boros, B., Stefova, M., Stafilov, T., & Vojnoski, B. (2015). Phenolic compounds and antioxidant activity of Macedonian red wines. Journal of Food Composition and Analysis, 41, 1–14.Google Scholar
  46. 46.
    Hashim, S. N. N. S., Schwarz, L. J., Boysen, R. I., Yang, Y., Danylec, B., & Hearn, M. T. W. (2013). Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine. Journal of Chromatography A, 1313, 284–290.PubMedGoogle Scholar
  47. 47.
    Lee, J., & Rennaker, C. (2007). Antioxidant capacity and stilbene contents of wines produced in the Snake River Valley of Idaho. Food Chemistry, 105(1), 195–203.Google Scholar
  48. 48.
    Corduneanu, O., Janeiro, P., & Brett, A. M. O. (2006). On the electrochemical oxidation of resveratrol. Electroanalysis, 18(8), 757–762.Google Scholar
  49. 49.
    Biasoto, A. C. T., Catharino, R. R., Sanvido, G. B., Eberlin, M. N., & da Silva, M. A. A. P. (2010). Flavour characterization of red wines by descriptive analysis and ESI mass spectrometry. Food Quality and Preference, 21(7), 755–762.Google Scholar
  50. 50.
    Chu, Q., O’Dwye, M., & Zeece, M. G. (1998). Direct analysis of resveratrol in wine by micellar electrokinetic capillary electrophoresis. Journal of Agricultural and Food Chemistry, 46(2), 509–513.PubMedGoogle Scholar
  51. 51.
    Jiménez Sánchez, J. B., Crespo Corral, E., Santos Delgado, M. J., Orea, J. M., & Ureña, A. G. (2005). Analysis of trans-resveratrol by laser ionization mass spectrometry and HPLC with fluorescence detection. Journal of Chromatography A, 1074(1–2), 133–138.Google Scholar
  52. 52.
    Boutegrabet, L., Fekete, A., Hertkorn, N., Papastamoulis, Y., Waffo-Téguo, P., Mérillon, J. M., et al. (2011). Determination of stilbene derivatives in Burgundy red wines by ultra-high-pressure liquid chromatography. Analytical and Bioanalytical Chemistry, 401(5), 1513–1521.PubMedGoogle Scholar
  53. 53.
    Beňová, B., Adam, M., Onderková, K., Královský, J., & Krajíček, M. (2008). Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection. Journal of Separation Science, 31(13), 2404–2409.PubMedGoogle Scholar
  54. 54.
    Gross, J. H. (2011). Electrospray ionization. In Mass spectrometry (pp. 561–620). Berlin, Heidelberg: Springer.Google Scholar
  55. 55.
    Jeandet, P., Heinzmann, S. S., Roullier-Gall, C., Cilindre, C., Aron, A., & Deville, M. A. (2015). Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 5893–5898.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Monge, M. E., Harris, G. A., Dwivedi, P., & Fernández, F. M. (2013). Mass spectrometry: Recent advances in direct open air surface sampling/ionization. Chemical Reviews, 113(4), 2269–2308.PubMedGoogle Scholar
  57. 57.
    Mirsaleh-Kohan, N., Robertson, W. D., & Compton, R. N. (2008). Electron ionization time-of-flight mass spectrometry: Historical review and current applications. Mass Spectrometry Reviews, 27(3), 237–285.PubMedGoogle Scholar
  58. 58.
    Wasinger, V. C., Zeng, M., & Yau, Y. (2013). Current status and advances in quantitative proteomic mass spectrometry. International Journal of Proteomics, 2013, 180605.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Shen, T., Wang, X.-N., & Lou, H.-X. (2009). Natural stilbenes: An overview. Natural Product Reports, 26(7), 916–935.PubMedGoogle Scholar
  60. 60.
    Chukwumah, Y., Walker, L., Vogler, B., & Verghese, M. (2011). In vitro absorption of dietary trans-resveratrol from boiled and roasted peanuts in Caco-2 cells. Journal of Agricultural and Food Chemistry, 59(23), 12323–12329.PubMedGoogle Scholar
  61. 61.
    Counet, C., Callemien, D., & Collin, S. (2006). Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chemistry, 98(4), 649–657.Google Scholar
  62. 62.
    Jerkovic, V., Bröhan, M., Monnart, E., Nguyen, F., Nizet, S., & Collin, S. (2010). Stilbenic profile of cocoa liquors from different origins determined by RP-HPLC-APCI(+)-MS/MS. Detection of a new resveratrol hexoside. Journal of Agricultural and Food Chemistry, 58(11), 7067–7074.PubMedGoogle Scholar
  63. 63.
    Li, F., Zhan, Z., Liu, F., Yang, Y., Li, L., Feng, Z., et al. (2013). Polyflavanostilbene A, a new flavanol-fused stilbene glycoside from Polygonum cuspidatum. Organic Letters, 15(3), 674–677.PubMedGoogle Scholar
  64. 64.
    Kerem, Z., Bilkis, I., Flaishman, M. A., & Sivan, L. (2006). Antioxidant activity and inhibition of α-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L. Journal of Agricultural and Food Chemistry, 54(4), 1243–1247.PubMedGoogle Scholar
  65. 65.
    Flamini, R., De Rosso, M., De Marchi, F., Dalla Vedova, A., Panighel, A., & Gardiman, M. (2013). An innovative approach to grape metabolomics: Stilbene profiling by suspect screening analysis. Metabolomics, 9(6), 1243–1253.Google Scholar
  66. 66.
    Bavaresco L., De Rosso M., Gudiman M., Morreale G., & Flamini R.. (2016). Polyphenol metabolomics of twenty Italian red grape varieties. In J. M. Aurand (Ed.), BIO web of conferences, 39th world congress of vine and wine (Vol. 7, 0102, 2).Google Scholar
  67. 67.
    Bavaresco, L., Lucini, L., Busconi, M., Flamini, R., & De Rosso, M. (2016). Wine resveratrol: From the ground up. Nutrients, 8(4), 222.PubMedPubMedCentralGoogle Scholar
  68. 68.
    De Rosso M., Bavaresco L., De Marchi F., Vedova A. D., Panighel A., & Flamini R. (2015). Characterization of some Italian V-inifera red grape cultivars on the basis of their anthocyanin profiles. In S. H. Li, D. Archbold, & J. London (Eds.), XI, International conference on grapevine breeding and genetics (pp. 223–232).Google Scholar
  69. 69.
    Mayr, C. M., De Rosso, M., Dalla Vedova, A., & Flamini, R. (2018). High-resolution mass spectrometry identification of secondary metabolites in four red grape varieties potentially useful as traceability markers of wines. Beverages, 4, 74.Google Scholar
  70. 70.
    De Rosso, M., Mayr, C. M., Girardi, G., Dalla Vedova, A., & Flamini, R. (2018). High-resolution mass spectrometry metabolomics of grape chemical markers to reveal use of not-allowed varieties in the production of Amarone and Recioto wines. Metabolomics, 14, 124.PubMedGoogle Scholar
  71. 71.
    Sun, B., Ribes, A. M., Leandro, M. C., Belchior, A. P., & Spranger, M. I. (2006). Stilbenes: Quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Analytica Chimica Acta, 563(1–2), 382–390.Google Scholar
  72. 72.
    Ivanova, V., Dörnyei, Á., Márk, L., Vojnoski, B., Stafilov, T., Stefova, M., et al. (2011). Polyphenolic content of Vranec wines produced by different vinification conditions. Food Chemistry, 124(1), 316–325.Google Scholar
  73. 73.
    Rodriguez-Cabo, T., Rodriguez, I., Ramil, M., Silva, A., & Cela, R. (2016). Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry. Journal of Chromatography A, 1442, 107–117.PubMedGoogle Scholar
  74. 74.
    Bravo, M. N., Silva, S., Coelho, A. V., Boas, L. V., & Bronze, M. R. (2006). Analysis of phenolic compounds in Muscatel wines produced in Portugal. Analytica Chimica Acta, 563(1–2), 84–92.Google Scholar
  75. 75.
    Jean-Denis, J. B., Pezet, R., & Tabacchi, R. (2006). Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by liquid chromatography–atmospheric pressure photoionisation mass spectrometry. Journal of Chromatography A, 1112(1–2), 263–268.PubMedGoogle Scholar
  76. 76.
    Jaitz, L., Siegl, K., Eder, R., Rak, G., Abranko, L., Koellensperger, G., et al. (2010). LC–MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety and vintage. Food Chemistry, 122(1), 366–372.Google Scholar
  77. 77.
    Di Lecce, G., Arranz, S., Jáuregui, O., Tresserra-Rimbau, A., Quifer-Rada, P., & Lamuela-Raventós, R. M. (2014). Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chemistry, 145, 874–882.PubMedGoogle Scholar
  78. 78.
    Rodriguez-Naranjo, M. I., Gil-Izquierdo, A., Troncoso, A. M., Cantos, E., & Garcia-Parrilla, M. C. (2011). Melatonin: A new bioactive compound in wine. Journal of Food Composition and Analysis, 24(4–5), 603–608.Google Scholar
  79. 79.
    Wang, D., Zhang, Z., Ju, J., Wang, X., & Qiu, W. (2011). Investigation of piceid metabolites in rat by liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 879(1), 69–74.Google Scholar
  80. 80.
    Kong, Q. J., Ren, X. Y., Hu, N., Sun, C. R., & Pan, Y. J. (2011). Identification of isomers of resveratrol dimer and their analogues from wine grapes by HPLC/MSn and HPLC/DAD-UV. Food Chemistry, 127(2), 727–734.PubMedGoogle Scholar
  81. 81.
    Lopez-Hernandez, J., & de Quiros, A. R. B. (2016). Trans-stilbenes in commercial grape juices: Quantification using HPLC approaches. International Journal of Molecular Sciences, 17(10), 1769.PubMedCentralGoogle Scholar
  82. 82.
    Ribeiro, L. F., Ribani, R. H., Francisco, T. M. G., Soares, A. A., Pontarolo, R., & Haminiuk, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1007, 72–80.PubMedGoogle Scholar
  83. 83.
    Hurtado-Gaitan, E., Selles-Marchart, S., Martinez-Marquez, A., Samper-Herrero, A., & Bru-Martinez, R. (2017). A focused multiple reaction monitoring (MRM) quantitative method for bioactive grapevine stilbenes by ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ). Molecules, 22(3). Scholar
  84. 84.
    Jiang, L.-Y., He, S., Jiang, K.-Z., Sun, C.-R., & Pan, Y.-J. (2010). Resveratrol and its oligomers from wine grapes are selective 1O2 quenchers: Mechanistic implication by high-performance liquid chromatography−electrospray ionization−tandem mass spectrometry and theoretical calculation. Journal of Agricultural and Food Chemistry, 58(16), 9020–9027.PubMedGoogle Scholar
  85. 85.
    Montes, R., García-López, M., Rodríguez, I., & Cela, R. (2010). Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliable determination of trans-resveratrol in wine samples. Analytica Chimica Acta, 673(1), 47–53.PubMedGoogle Scholar
  86. 86.
    Arbulu, M., Sampedro, M. C., Sanchez-Ortega, A., Gómez-Caballero, A., Unceta, N., Goicolea, M. A., et al. (2013). Characterisation of the flavour profile from Graciano Vitis vinifera wine variety by a novel dual stir bar sorptive extraction methodology coupled to thermal desorption and gas chromatography–mass spectrometry. Analytica Chimica Acta, 777(0), 41–48.PubMedGoogle Scholar
  87. 87.
    Cacho, J. I., Campillo, N., Viñas, P., & Hernández-Córdoba, M. (2013). Stir bar sorptive extraction with gas chromatography–mass spectrometry for the determination of resveratrol, piceatannol and oxyresveratrol isomers in wines. Journal of Chromatography A, 1315(0), 21–27.PubMedGoogle Scholar
  88. 88.
    Viñas, P., Martínez-Castillo, N., Campillo, N., & Hernández-Córdoba, M. (2011). Directly suspended droplet microextraction with in injection-port derivatization coupled to gas chromatography–mass spectrometry for the analysis of polyphenols in herbal infusions, fruits and functional foods. Journal of Chromatography A, 1218(5), 639–646.PubMedGoogle Scholar
  89. 89.
    Viñas, P., Campillo, N., Martínez-Castillo, N., & Hernández-Córdoba, M. (2009). Solid-phase microextraction on-fiber derivatization for the analysis of some polyphenols in wine and grapes using gas chromatography–mass spectrometry. Journal of Chromatography A, 1216(9), 1279–1284.PubMedGoogle Scholar
  90. 90.
    Paul, S., Mizuno, C. S., Lee, H. J., Zheng, X., Chajkowisk, S., Rimoldi, J. M., et al. (2010). In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. European Journal of Medicinal Chemistry, 45(9), 3702–3708.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Xueyan, R., Jia, Y., Xuefeng, Y., Lidan, T., & Qingju, K. (2018). Isolation and purification of five phenolic compounds from the Xinjiang wine grape (Vitis Vinifera) and determination of their antioxidant mechanism at cellular level. European Food Research and Technology, 244, 1569–1579.Google Scholar
  92. 92.
    Papastamoulis, Y., Bisson, J., Temsamani, H., Richard, T., Marchal, A., & Merillon, J. M. (2015). New E-miyabenol isomer isolated from grapevine cane using centrifugal partition chromatography guided by mass spectrometry. Tetrahedron, 71(20), 3138–3142.Google Scholar
  93. 93.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2012). Automatic determination of disulfide bridges in proteins. Journal of Laboratory Automation, 17(6), 408–416.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Sokolowska, I., Woods, A. G., Wagner, J., Dorler, J., Wormwood, K., Thome, J., et al. (2011). Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy (Vol. 1083, pp. 369–411). Washington, DC: American Chemical Society.Google Scholar
  95. 95.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Wormwood, K. L., Dao, S., Patel, S., et al. (2013). Automated mass spectrometry-based functional assay for the routine analysis of the secretome. Journal of Laboratory Automation, 18(1), 19–29.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Villagra, E., Santos, L. S., Vaz, B. G., Eberlin, M. N., & Felipe Laurie, V. (2012). Varietal discrimination of Chilean wines by direct injection mass spectrometry analysis combined with multivariate statistics. Food Chemistry, 131(2), 692–697.Google Scholar
  97. 97.
    de Souza, P. P., Resende, A. M. M., Augusti, D. V., Badotti, F., Gomes, F. d. C. O., Catharino, R. R., et al. (2014). Artificially-aged cachaça samples characterised by direct infusion electrospray ionisation mass spectrometry. Food Chemistry, 143, 77–81.PubMedGoogle Scholar
  98. 98.
    Cooper, H. J., & Marshall, A. G. (2001). Electrospray ionization Fourier transform mass spectrometric analysis of wine. Journal of Agricultural and Food Chemistry, 49(12), 5710–5718.PubMedGoogle Scholar
  99. 99.
    Richard, T., Poupard, P., Nassra, M., Papastamoulis, Y., Iglésias, M.-L., & Krisa, S. (2011). Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorganic & Medicinal Chemistry, 19(10), 3152–3155.Google Scholar
  100. 100.
    Draper, J., Lloyd, A. J., Goodacre, R., & Beckmann, M. (2013). Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: A review. Metabolomics, 9(1), 4–29.Google Scholar
  101. 101.
    Gross, J. H. (2004). Electron ionization. In Mass spectrometry: A textbook (pp. 193–222). Heidelberg: Springer.Google Scholar
  102. 102.
    Gougeon, R. D., Lucio, M., Frommberger, M., Peyron, D., Chassagne, D., Alexandre, H., et al. (2009). The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9174–9179.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Roullier-Gall, C., Boutegrabet, L., Gougeon, R. D., & Schmitt-Kopplin, P. (2014). A grape and wine chemodiversity comparison of different appellations in burgundy: Vintage vs terroir effects. Food Chemistry, 152, 100–107.PubMedGoogle Scholar
  104. 104.
    Lena do Nascimento Silva, F., Schmidt, E. M., Messias, C. L., Eberlin, M. N., & Helena Frankland Sawaya, A. C. (2015). Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Analytical Methods, 7(1), 53–62.Google Scholar
  105. 105.
    Farrell, R. R., Fahrentrapp, J., García-Gómez, D., Martinez-Lozano Sinues, P., & Zenobi, R. (2017). Rapid fingerprinting of grape volatile composition using secondary electrospray ionization orbitrap mass spectrometry: A preliminary study of grape ripening. Food Control, 81, 107–112.Google Scholar
  106. 106.
    Arapitsas, P., & Mattivi, F. (2018). LC-MS untargeted protocol for the analysis of wine. In Metabolic profiling: Methods and protocols (pp. 225–235). New York: Humana Press.Google Scholar
  107. 107.
    Lloyd, N., Johnson, D. L., & Herderich, M. J. (2015). Metabolomics approaches for resolving and harnessing chemical diversity in grapes, yeast and wine. Australian Journal of Grape and Wine Research, 21, 723–740.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Veronica Andrei
    • 1
  • Dana Copolovici
    • 2
  • Florentina-Daniela Munteanu
    • 2
  • Armand G. Ngounou Wetie
    • 3
  • Iuliana Mihai
    • 1
  • Costel C. Darie
    • 3
  • Alina Vasilescu
    • 1
    Email author
  1. 1.International Centre of BiodynamicsBucharestRomania
  2. 2.Faculty of Food Engineering, Tourism and Environmental Protection“Aurel Vlaicu” University of AradAradRomania
  3. 3.Biochemistry & Proteomics GroupDepartment of Chemistry & Biomolecular Science, Clarkson UniversityPotsdamUSA

Personalised recommendations