Advertisement

Metabolomics and Biomarker Discovery

  • Kathryn Sinclair
  • Ed DudleyEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)

Abstract

Recently, metabolomics—the study of metabolite profiles within biological samples—has found a wide range of applications. This chapter describes the different techniques available for metabolomic analysis, the various samples that can be utilised for analysis and applications of both global and targeted metabolomic analysis to biomarker discovery in medicine.

Keywords

Biomarkers Metabolomics Pancreatic cancer 

References

  1. 1.
    Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463–466.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Watanabe, M., Sheriff, S., Lewis, K. B., Cho, J., Tinch, S. L., Balasubramaniam, A., et al. (2012). Metabolic profiling comparison of human pancreatic ductal epithelial cells and three pancreatic cancer cell lines using NMR based Metabonomics. Journal of Molecular Biomarkers and Diagnosis, 3(2)., S3-002.Google Scholar
  3. 3.
    Yu, Z., Kastenmüller, G., He, Y., Belcredi, P., Möller, G., Prehn, C., et al. (2011). Differences between human plasma and serum metabolite profiles. PLoS One, 6(7), e21230.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bando, K., Kawahara, R., Kunimatsu, T., Sakai, J., Kimura, J., Funabashi, H., et al. (2010). Influences of biofluid sample collection and handling procedures on GC-MS based metabolomic studies. Journal of Bioscience and Bioengineering, 110(4), 491–499.PubMedGoogle Scholar
  5. 5.
    Lance, V. A., Patton, M. L., & Hagey, L. R. (2001). Identification of a series of C(21)O(2) pregnanes from fecal extracts of a pregnant black rhinoceros (Diceros bicornis minor). Steroids, 66(12), 875–881.PubMedGoogle Scholar
  6. 6.
    Dettmer, K., Nürnberger, N., Kaspar, H., Gruber, M. A., Almstetter, M. F., & Oefner, P. J. (2011). Metabolite extraction from adherently growing mammalian cells for metabolomics studies: Optimization of harvesting and extraction protocols. Analytical and Bioanalytical Chemistry, 399(3), 1127–1139.PubMedGoogle Scholar
  7. 7.
    Teng, Q., Huang, W., Collette, T. W., Ekman, D. R., & Tan, C. (2009). A direct cell quenching method for cell-culture based metabolomics. Metabolomics, 5, 199–208.Google Scholar
  8. 8.
    Barnes, S., Benton, H. P., Casazza, K., Cooper, S. J., Cui, X., Du, X., et al. (2016). Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. Journal of Mass Spectrometry, 51(7), 461–475.PubMedGoogle Scholar
  9. 9.
    Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., & Raftery, D. (2008). Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics, 8(5), 617–633.PubMedGoogle Scholar
  10. 10.
    Brennan, L. (2014). NMR-based metabolomics: From sample preparation to applications in nutrition research. Progress in Nuclear Magnetic Resonance Spectroscopy, 83, 42–49.PubMedGoogle Scholar
  11. 11.
    Lewis, P. D., Lewis, K. E., Ghosal, R., Bayliss, S., Lloyd, A. J., Wills, J., et al. (2010). Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer, 10, 640.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Ding, J., Xu, T., Tan, X., Jin, H., Shao, J., & Li, H. (2017). Raman spectrum: A potential biomarker for embryo assessment during in vitro fertilization. Experimental and Therapeutic Medicine, 13(5), 1789–1792.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang, A., Sun, H., Xu, H., Qiu, S., & Wang, X. (2013). Cell metabolomics. OMICS, 17(10), 495–501.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Laponogov, I., Sadawi, N., Galea, D., Mirnezami, R., Veselkov, K. A., & Wren, J. (2018). ChemDistiller: An engine for metabolite annotation in mass spectrometry. Bioinformatics [Epub ahead of print].Google Scholar
  15. 15.
    Lee, S. Y., Park, N. H., Jeong, E. K., Wi, J. W., Kim, C. J., Kim, J. Y., et al. (2012). Comparison of GC/MS and LC/MS methods for the analysis of propofol and its metabolites in urine. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 900, 1–10.PubMedGoogle Scholar
  16. 16.
    Lei, Z., Huhman, D. V., & Sumner, L. W. (2011). Mass spectrometry strategies in metabolomics. The Journal of Biological Chemistry, 286(29), 25435–25442.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kapoore, R., Coyle, R., Staton, C. A., Brown, N. J., & Vaidyanathan, S. (2017). Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: A case study with the metastatic breast cancer cell line MDA-MB-231. Analyst, 142(1), 2038–2049.PubMedGoogle Scholar
  18. 18.
    Liu, J., Liu, Y., Wang, Y., Abozeid, A., Zu, Y. G., & Tang, Z. H. (2017). The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. Journal of Pharmaceutical and Biomedical Analysis, 135, 176–185.PubMedGoogle Scholar
  19. 19.
    Manna, S. K., Patterson, A. D., Yang, Q., Krausz, K. W., Idle, J. R., Fornace Jr., A. J., et al. (2011). UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. Journal of Proteome Research, 10(9), 4120–4133.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhao, H., Liu, Y., Li, Z., Song, Y., Cai, X., Liu, Y., et al. (2018). Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS. Clinica Chimica Acta, 486, 192–198.Google Scholar
  21. 21.
    Wang, C., Liu, C., Wang, M., Ma, Q., Li, Y., Wang, T., et al. (2018). UPLC-HRMS-based plasma Metabolomic profiling of novel biomarkers by treatment with KDZI in cerebral ischemia reperfusion rats. Molecules, 23(6), 1315.PubMedCentralGoogle Scholar
  22. 22.
    Calvano, C. D., Monopoli, A., Cataldi, T. R. I., & Palmisano, F. (2018). MALDI matrices for low molecular weight compounds: An endless story? Analytical and Bioanalytical Chemistry, 410(17), 4015–4038.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Pietrowska, M., & Widłak, P. (2012). MALDI-MS-based profiling of serum proteome: Detection of changes related to progression of Cancer and response to anticancer treatment. International Journal of Proteomics, 2012, 926427.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Siciliano, R. A., Mazzeo, M. F., Spada, V., Facchiano, A., d’Acierno, A., Stocchero, M., et al. (2014). Rapid peptidomic profiling of peritoneal fluid by MALDI-TOF mass spectrometry for the identification of biomarkers of endometriosis. Gynecological Endocrinology, 30(12), 872–876.PubMedGoogle Scholar
  25. 25.
    Wang, Y., Chen, J., Chen, L., Zheng, P., Xu, H. B., & Lu, J. (2014). Urinary peptidomics identifies potential biomarkers for major depressive disorder. Psychiatry Research, 217(1-2), 25–33.PubMedGoogle Scholar
  26. 26.
    Smith, A., Galli, M., Piga, I., Denti, V., Stella, M., Chinello, C., et al. (2019). Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Proteomics, 191, 114–123.PubMedGoogle Scholar
  27. 27.
    Ser, Z., Liu, X., Tang, N. N., & Locasale, J. W. (2015). Extraction parameters for metabolomics from cultured cells. Analytical Biochemistry, 475, 22–28.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Sellick, C. A., Knight, D., Croxford, A. S., Maqsood, A. F., Stephens, G. M., Goodacre, R., et al. (2010). Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: Matching extraction approaches to cell type and metabolite targets. Metabolomics, 6, 427–438.Google Scholar
  29. 29.
    Lorenz, M. A., Burant, C. F., & Kennedy, R. T. (2011). Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Analytical Chemistry, 83(9), 3406–3414.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Purwaha, P., Lorenzi, P. L., Silva, L. P., Hawke, D. H., & Weinstein, J. N. (2014). Targeted metabolomic analysis of amino acid response to L-asparaginase in adherent cells. Metabolomics, 10(5), 909–919.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sapcariu, S. C., Kanashova, T., Weindl, J. G., Dittmer, G., & Hiller, K. (2014). Simultaneous extraction of proteins and metabolites from cells in culture. MethodsX, 1, 74–80.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu, L., Aa, J., Wang, G., Yan, B., Zhang, Y., Wang, X., et al. (2010). Differences in metabolite profile between blood plasma and serum. Analytical Biochemistry, 406(2), 105–112.PubMedGoogle Scholar
  33. 33.
    Al Awam, K., Haußleiter, I. S., Dudley, E., Donev, R., Brüne, M., Juckel, G., et al. (2017). Multiplatform metabolome and proteome profiling identifies serum metabolite and protein signatures as prospective biomarkers for schizophrenia. Schizophrenia Research, 185, 182–189.Google Scholar
  34. 34.
    Liu, Y., Chen, T., Qiu, Y., Cheng, Y., Cao, Y., Zhao, A., et al. (2011). An ultrasonication-assisted extraction and derivatization protocol for GC/TOFMS-based metabolite profiling. Analytical and Bioanalytical Chemistry, 400(5), 1405–1417.PubMedGoogle Scholar
  35. 35.
    Thomas, C. E., Sexton, W., Benson, K., Sutphen, R., & Koomen, J. (2010). Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiology, Biomarkers & Prevention, 19(4), 953–959.Google Scholar
  36. 36.
    Novak, B. J., Blake, D. R., Meinardi, S., Rowland, F. S., Pontello, A., Cooper, D. M., et al. (2007). Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15613–15618.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Davies, M. P., Barash, O., Jeries, R., Peled, N., Ilouze, M., Hyde, R., et al. (2014). Unique volatolomic signatures of TP53 and KRAS in lung cells. British Journal of Cancer, 111(6), 1213–1221.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Thriumani, R., Zakaria, A., Hashim, Y. Z. H., Jeffree, A. I., Helmy, K. M., Kamarudin, L. M., et al. (2018). A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS. BMC Cancer, 18(1), 362.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jia, Z., Zhang, H., Ong, C. N., Patra, A., Lu, Y., Lim, C. T., et al. (2018). Detection of lung Cancer: Concomitant volatile organic compounds and Metabolomic profiling of six Cancer cell lines of different histological origins. ACS Omega, 3(5), 5131–5140.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Phillips, M., Bauer, T. L., Cataneo, R. N., Lebauer, C., Mundada, M., Pass, H. I., et al. (2015). Blinded validation of breath biomarkers of lung cancer, a potential ancillary to chest CT screening. PLoS One, 10(12), e0142484.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chin, S. T., Romano, A., Doran, S. L. F., & Hanna, G. B. (2018). Cross-platform mass spectrometry annotation in breathomics of oesophageal-gastric cancer. Scientific Reports, 8(1), 5139.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Barash, O., Zhang, W., Halpern, J. M., Hua, Q. L., Pan, Y. Y., Kayal, H., et al. (2015). Differentiation between genetic mutations of breast cancer by breath volatolomics. Oncotarget, 6(42), 44864–44876.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Meyer, N., Dallinga, J. W., Nuss, S. J., Moonen, E. J., van Berkel, J. J., Akdis, C., et al. (2014). Defining adult asthma endotypes by clinical features and patterns of volatile organic compounds in exhaled air. Respiratory Research, 15, 136.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jareño-Esteban, J. J., Muñoz-Lucas, M. Á., Gómez-Martín, Ó., Utrilla-Trigo, S., Gutiérrez-Ortega, C., Aguilar-Ros, A., et al. (2017). Study of 5 volatile organic compounds in exhaled breath in chronic obstructive pulmonary disease. Archivos de Bronconeumología, 53(5), 251–256.PubMedGoogle Scholar
  45. 45.
    Besa, V., Teschler, H., Kurth, I., Khan, A. M., Zarogoulidis, P., Baumbach, J. I., et al. (2015). Exhaled volatile organic compounds discriminate patients with chronic obstructive pulmonary disease from healthy subjects. International Journal of Chronic Obstructive Pulmonary Disease, 10, 399–406.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Rieder, F., Kurada, S., Grove, D., Cikach, F., Lopez, R., Patel, N., et al. (2016). A distinct colon-derived breath metabolome is associated with inflammatory bowel disease, but not its complications. Clinical and Translational Gastroenterology, 7(11), e201.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Baranska, A., Mujagic, Z., Smolinska, A., Dallinga, J. W., Jonkers, D. M., Tigchelaar, E. F., et al. (2016). Volatile organic compounds in breath as markers for irritable bowel syndrome: A metabolomic approach. Alimentary Pharmacology & Therapeutics, 44(1), 45–56.Google Scholar
  48. 48.
    Fernández Del Río, R., O’Hara, M. E., Holt, A., Pemberton, P., Shah, T., Whitehouse, T., et al. (2015). Volatile biomarkers in breath associated with liver cirrhosis – comparisons of pre- and post-liver transplant breath samples. eBioMedicine, 2(9), 1243–1250.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Mansoor, J. K., Schelegle, E. S., Davis, C. E., Walby, W. F., Zhao, W., Aksenov, A. A., et al. (2014). Analysis of volatile compounds in exhaled breath condensate in patients with severe pulmonary arterial hypertension. PLoS One, 9(4), e95331.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Sukul, P., Schubert, J. K., Oertel, P., Kamysek, S., Taunk, K., Trefz, P., et al. (2016). FEV manoeuvre induced changes in breath VOC compositions: An unconventional view on lung function tests. Scientific Reports, 6, 28029.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sukul, P., Trefz, P., Schubert, J. K., & Miekisch, W. (2014). Immediate effects of breath holding maneuvers onto composition of exhaled breath. Journal of Breath Research, 8(3), 037102.PubMedGoogle Scholar
  52. 52.
    Cancer research UK. (2017). Pancreatic cancer statistics. [www. Document] accessed at http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer.
  53. 53.
    Freelove, R., & Walling, A. D. (2006). Pancreatic cancer: Diagnosis and management. American Family Physician, 73(3), 485–492.PubMedGoogle Scholar
  54. 54.
    Holly, E. A., Chaliha, I., Bracci, P. M., & Gautam, M. (2004). Signs and symptoms of pancreatic cancer: A population-based case-control study in the San Francisco Bay area. Clinical Gastroenterology and Hepatology, 2(6), 510–517.PubMedGoogle Scholar
  55. 55.
    Ballehaninna, U. K., & Chamberlain, R. S. (2012). The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. Journal of Gastrointestinal Oncology, 3(2), 105–119.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Li, D., Xie, K., Wolff, R., & Abbruzzese, J. L. (2004). Pancreatic cancer. Lancet, 363(9414), 1049–1057.PubMedGoogle Scholar
  57. 57.
    Lindahl, A., Heuchel, R., Forshed, J., Lehtiö, J., Löhr, M., & Nordström, A. (2017). Discrimination of pancreatic cancer and pancreatitis by LC-MS metabolomics. Metabolomics, 13(5), 61.PubMedPubMedCentralGoogle Scholar
  58. 58.
    van Heerde, M. J., Buijs, J., Hansen, B. E., de Waart, M., van Eijck, C. H., Kazemier, G., et al. (2014). Serum level of Ca 19-9 increases ability of IgG4 test to distinguish patients with autoimmune pancreatitis from those with pancreatic carcinoma. Digestive Diseases and Sciences, 59(6), 1322–1329.PubMedGoogle Scholar
  59. 59.
    Rückert, F., Pilarsky, C., & Grützmann, R. (2010). Serum tumor markers in pancreatic Cancer—Recent discoveries. Cancers (Basel), 2(2), 1107–1124.Google Scholar
  60. 60.
    Kim, J. E., Lee, K. T., Lee, J. K., Paik, S. W., Rhee, J. C., & Choi, K. W. (2004). Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. Journal of Gastroenterology and Hepatology, 19(2), 182–186.PubMedGoogle Scholar
  61. 61.
    Velstra, B., Bonsing, B. A., Mertens, B. J., van der Burgt, Y. E., Huijbers, A., Vasen, H., et al. (2013). Detection of pancreatic cancer using serum protein profiling. HPB: The Official Journal of the International Hepato Pancreato Biliary Association, 15(8), 602–610.Google Scholar
  62. 62.
    Kim, K., Ahn, S., Lim, J., Yoo, B. C., Hwang, J. H., & Jang, W. (2015). Detection of pancreatic cancer biomarkers using mass spectrometry. Cancer Informatics, 13(Suppl 7), 45–53.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Daemen, A., Peterson, D., Sahu, N., McCord, R., Du, X., Liu, B., et al. (2015). Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 112(32), E4410–E4417.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Xie, G., Lu, L., Qiu, Y., Ni, Q., Zhang, W., Gao, Y. T., et al. (2015). Plasma metabolite biomarkers for the detection of pancreatic cancer. Journal of Proteome Research, 14(2), 1195–1202.PubMedGoogle Scholar
  65. 65.
    Davis, V. W., Schiller, D. E., Eurich, D., Bathe, O. F., & Sawyer, M. B. (2013). Metabolomics and surgical oncology: Potential role for small molecule biomarkers. Annals of Surgical Oncology, 20(Suppl 3), S415–S423.PubMedGoogle Scholar
  66. 66.
    Cui, Y., Shu, X. O., Li, H. L., Yang, G., Wen, W., Gao, Y. T., et al. (2017). Prospective study of urinary prostaglandin E2 metabolite and pancreatic cancer risk. International Journal of Cancer, 141(12), 2423–2429.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Wang, D., & DuBois, R. N. (2013). An inflammatory mediator, prostaglandin E2, in colorectal cancer. Cancer Journal, 19(6), 502–510.Google Scholar
  68. 68.
    Luan, H., Liu, L. F., Tang, Z., Zhang, M., Chua, K. K., Song, J. X., et al. (2015). Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Scientific Reports, 5, 13888.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hatano, T., Saiki, S., Okuzumi, A., Mohney, R. P., & Hattori, N. (2016). Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. Journal of Neurology, Neurosurgery, and Psychiatry, 87(3), 295–301.PubMedGoogle Scholar
  70. 70.
    Han, W., Sapkota, S., Camicioli, R., Dixon, R. A., & Li, L. (2017). Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Movement Disorders, 32(12), 1720–1728.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gevi, F., Zolla, L., Gabriele, S., & Persico, A. M. (2016). Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Molecular Autism, 7, 47.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Bent, S., Lawton, B., Warren, T., Widjaja, F., Dang, K., Fahey, J. W., et al. (2018). Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Molecular Autism, 9, 35.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Liu, M. L., Zheng, P., Liu, Z., Xu, Y., Mu, J., Guo, J., et al. (2014). GC-MS based metabolomics identification of possible novel biomarkers for schizophrenia in peripheral blood mononuclear cells. Molecular BioSystems, 10(9), 2398–2406.PubMedGoogle Scholar
  74. 74.
    Tasic, L., Pontes, J. G. M., Carvalho, M. S., Cruz, G., Dal Mas, C., Sethi, S., et al. (2017). Metabolomics and lipidomics analyses by 1H nuclear magnetic resonance of schizophrenia patient serum reveal potential peripheral biomarkers for diagnosis. Schizophrenia Research, 185, 182–189.PubMedGoogle Scholar
  75. 75.
    Liu, M. L., Zhang, X. T., Du, X. Y., Fang, Z., Liu, Z., Xu, Y., et al. (2015). Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: A targeted metabolomic study. Journal of Translational Medicine, 13, 226.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Cao, B., Jin, M., Brietzke, E., McIntyre, R. S., Wang, D., Rosenblat, J. D., et al. (2019). Serum metabolic profiling using small molecular water-soluble metabolites in individuals with schizophrenia: A longitudinal study using a pre-post-treatment design. Psychiatry and Clinical Neurosciences, 73, 100–108.PubMedGoogle Scholar
  77. 77.
    Weir, J. M., Wong, G., Barlow, C. K., Greeve, M. A., Kowalczyk, A., Almasy, L., et al. (2013). Plasma lipid profiling in a large population-based cohort. Journal of Lipid Research, 54, 2898–2908.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Seyer, A., Boudah, S., Broudin, S., Junot, C., & Colsch, B. (2016). Annotation of the human cerebrospinal fluid lipidome using high resolution mass spectrometry and a dedicated data processing workflow. Metabolomics, 12, 91.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Herzog, K., Pras-Raves, M. L., Vervaart, M. A., Luyf, A. C., van Kampen, A. H., Wanders, R. J., et al. (2016). Lipidomic analysis of fibroblasts from Zellweger spectrum disorder patients identifies disease-specific phospholipid ratios. Journal of Lipid Research, 57(8), 1447–1454.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Al-Naamani, N., Sagliani, K. D., Dolnikowski, G. G., Warburton, R. R., Toksoz, D., Kayyali, U., et al. (2016). Plasma 12- and 15-hydroxyeicosanoids are predictors of survival in pulmonary arterial hypertension. Pulmonary Circulation, 6(2), 224–233.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lebkuchen, A., Carvalho, V. M., Venturini, G., Salgueiro, J. S., Freitas, L. S., Dellavance, A., et al. (2018). Metabolomic and lipidomic profile in men with obstructive sleep apnoea: Implications for diagnosis and biomarkers of cardiovascular risk. Scientific Reports, 8(1), 11270.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Chan, P., Suridjan, I., Mohammad, D., Herrmann, N., Mazereeuw, G., Hillyer, L. M., et al. (2018). Novel phospholipid signature of depressive symptoms in patients with coronary artery disease. Journal of the American Heart Association, 7(10)., pii: e008278.Google Scholar
  83. 83.
    Purwaha, P., Gu, F., Piyarathna, D. W. B., Rajendiran, T., Ravindran, A., Omilian, A. R., et al. (2018). Unbiased Lipidomic profiling of triple-negative breast Cancer tissues reveals the Association of Sphingomyelin Levels with patient disease-free survival. Metabolites, 8(3)., pii: E41.Google Scholar
  84. 84.
    Kim, H. Y., Lee, H., Kim, S. H., Jin, H., Bae, J., & Choi, H. K. (2017). Discovery of potential biomarkers in human melanoma cells with different metastatic potential by metabolic and lipidomic profiling. Scientific Reports, 7(1), 8864.PubMedPubMedCentralGoogle Scholar
  85. 85.
    de Figueiredo Junior, A. G., Serafim, P. V. P., de Melo, A. A., Felipe, A. V., Lo Turco, E. G., da Silva, I. D. C. G., et al. (2018). Analysis of the lipid profile in patients with colorectal Cancer in advanced stages. Asian Pacific Journal of Cancer Prevention, 19(5), 1287–1293.PubMedGoogle Scholar
  86. 86.
    Fernandes Messias, M. C., Mecatti, G. C., Figueiredo Angolini, C. F., Eberlin, M. N., Credidio, L., Real Martinez, C. A., et al. (2018). Plasma Lipidomic signature of rectal adenocarcinoma reveals potential biomarkers. Frontiers in Oncology, 7, 325.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Braicu, E. I., Darb-Esfahani, S., Schmitt, W. D., Koistinen, K. M., Heiskanen, L., Pöhö, P., et al. (2017). High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget, 8(61), 102912–102922.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Ren, C., Liu, J., Zhou, J., Liang, H., Wang, Y., Sun, Y., et al. (2018). Lipidomic analysis of serum samples from migraine patients. Lipids in Health and Disease, 17(1), 22.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Blasco, H., Veyrat-Durebex, C., Bocca, C., Patin, F., Vourc’h, P., Kouassi Nzoughet, J., et al. (2017). Lipidomics reveals cerebrospinal-fluid signatures of ALS. Scientific Reports, 7(1), 17652.PubMedPubMedCentralGoogle Scholar
  90. 90.
    O’Gorman, A., Suvitaival, T., Ahonen, L., Cannon, M., Zammit, S., Lewis, G., et al. (2017). Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon longitudinal study of parents and children (ALSPAC) cohort. Translational Psychiatry, 7(9), e1240.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Aquino, A., Alexandrino, G. L., Guest, P. C., Augusto, F., Gomes, A. F., Murgu, M., et al. (2018). Blood-based Lipidomics approach to evaluate biomarkers associated with response to olanzapine, risperidone, and quetiapine treatment in schizophrenia patients. Frontiers in Psychiatry, 9, 209.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Alexandre-Gouabau, M. C., Moyon, T., Cariou, V., Antignac, J. P., Qannari, E. M., Croyal, M., et al. (2018). Breast Milk Lipidome is associated with early growth trajectory in preterm infants. Nutrients, 10(2)., pii: E164.Google Scholar
  93. 93.
    Anand, S., Young, S., Esplin, M. S., Peaden, B., Tolley, H. D., Porter, T. F., et al. (2016). Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. Journal of Lipid Research, 57(4), 687–696.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Balog, J., Sasi-Szabó, L., Kinross, J., Lewis, M. R., Muirhead, L. J., Veselkov, K., et al. (2013). Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Science Translational Medicine, 5(194), 194ra93.PubMedGoogle Scholar
  95. 95.
    Alexander, J., Gildea, L., Balog, J., Speller, A., McKenzie, J., Muirhead, L., et al. (2017). A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: A prospective observational study of the iKnife. Surgical Endoscopy, 31(3), 1361–1370.PubMedGoogle Scholar
  96. 96.
    St John, E. R., Balog, J., McKenzie, J. S., Rossi, M., Covington, A., Muirhead, L., et al. (2017). Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: Towards an intelligent knife for breast cancer surgery. Breast Cancer Research, 19(1), 59.PubMedGoogle Scholar
  97. 97.
    Phelps, D. L., Balog, J., Gildea, L. F., Bodai, Z., Savage, A., El-Bahrawy, M. A., et al. (2018). The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). British Journal of Cancer, 118(10), 1349–1358.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., et al. (2015). N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell, 161(6), 1388–1399.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Durbin, A. F., Wang, C., Marcotrigiano, J., & Gehrke, L. (2016). RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. MBio, 7(5)., pii: e00833-16.Google Scholar
  100. 100.
    Shigi, N., Suzuki, T., Tamakoshi, M., Oshima, T., & Watanabe, K. (2002). Conserved bases in the TΨC loop of tRNA are determinants for thermophile-specific 2-Thiouridylation at position 54. The Journal of Biological Chemistry, 277(42), 39128–391235.PubMedGoogle Scholar
  101. 101.
    Pathak, C., Jaiswal, Y. K., & Vinayak, M. (2008). Modulation in the activity of lactate dehydrogenase and level of c-Myc and c-Fos by modified base queuine in cancer. Cancer Biology & Therapy, 7(1), 85–91.Google Scholar
  102. 102.
    Liu, X. C., & Scouten, W. H. (2000). Boronate affinity chromatography. Methods in Molecular Biology, 147, 119–128.PubMedGoogle Scholar
  103. 103.
    Dudley, E., El-Shakawi, S., Games, D. E., & Newton, R. P. (2000). Development of a purification procedure for the isolation of nucleosides from urine prior to mass spectrometric analysis. Nucleosides, Nucleotides & Nucleic Acids, 19(3), 545–558.Google Scholar
  104. 104.
    Solomon, S. J., Fischbein, A., Sharma, O. K., & Borek, E. (1985). Modified nucleosides in asbestos workers at high risk of malignant disease: Results of a preliminary study applying discriminant analysis. British Journal of Industrial Medicine, 42(8), 560–562.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Waszczuk-Jankowska, M., Markuszewski, M. J., Markuszewski, M., & Kaliszan, R. (2012). Comparison of RP-HPLC columns used for determination of nucleoside metabolic patterns in urine of cancer patients. Bioanalysis, 4(10), 1185–1194.PubMedGoogle Scholar
  106. 106.
    Langridge, J. I., McClure, T. D., Ei-Shakawi, S., Fielding, A., Schram, K. H., & Newton, R. P. (1993). Gas chromatography/mass spectrometric analysis of urinary nucleosides in cancer patients; potential of modified nucleosides as tumour markers. Rapid Communications in Mass Spectrometry, 7(6), 427–434.PubMedGoogle Scholar
  107. 107.
    Edmonds, C. G., Vestal, M. L., & McCloskey, J. A. (1985). Thermospray liquid chromatography-mass spectrometry of nucleosides and of enzymatic hydrolysates of nucleic acids. Nucleic Acids Research, 13(22), 8197–8206.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Dudley, E., El-Sharkawi, S., Games, D. E., & Newton, R. P. (2000). Analysis of urinary nucleosides. I. Optimisation of high performance liquid chromatography/electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 14(14), 1200–1207.PubMedGoogle Scholar
  109. 109.
    Dudley, E., Tuytten, R., Bond, A., Lemière, F., Brenton, A. G., Esmans, E. L., et al. (2005). Study of the mass spectrometric fragmentation of pseudouridine: Comparison of fragmentation data obtained by matrix-assisted laser desorption/ionisation post-source decay, electrospray ion trap multistage mass spectrometry, and by a method utilising electrospray quadrupole time-of-flight tandem mass spectrometry and in-source fragmentation. Rapid Communications in Mass Spectrometry, 19(21), 3075–3085.PubMedGoogle Scholar
  110. 110.
    Tuytten, R., Lemière, F., Esmans, E. L., Herrebout, W. A., van der Veken, B. J., Maes, B. U., et al. (2007). Role of nitrogen Lewis basicity in boronate affinity chromatography of nucleosides. Analytical Chemistry, 79(17), 6662–6669.PubMedGoogle Scholar
  111. 111.
    Tuytten, R., Lemière, F., Van Dongen, W., Witters, E., Esmans, E. L., Newton, R. P., et al. (2008). Development of an on-line SPE-LC–ESI-MS method for urinary nucleosides: Hyphenation of aprotic Boronic acid chromatography with hydrophilic interaction LC–ESI-MS. Analytical Chemistry, 80(4), 1263–1271.PubMedGoogle Scholar
  112. 112.
    Szymańska, E., Markuszewski, M. J., Capron, X., van Nederkassel, A. M., Heyden, Y. V., Markuszewski, M., et al. (2007). Increasing conclusiveness of metabonomic studies by cheminformatic preprocessing of capillary electrophoretic data on urinary nucleoside profiles. Journal of Pharmaceutical and Biomedical Analysis, 43(2), 413–420.PubMedGoogle Scholar
  113. 113.
    Mao, Y., Zhao, X., Wang, S., & Cheng, Y. (2007). Urinary nucleosides based potential biomarker selection by support vector machine for bladder cancer recognition. Analytica Chimica Acta, 598(1), 34–40.PubMedGoogle Scholar
  114. 114.
    Zheng, Y. F., Kong, H. W., Xiong, J. H., Lv, S., & Xu, G. W. (2005). Clinical significance and prognostic value of urinary nucleosides in breast cancer patients. Clinical Biochemistry, 38(1), 24–30.PubMedGoogle Scholar
  115. 115.
    Frickenschmidt, A., Frohlich, H., Bullinger, D., Zell, A., Laufer, S., Gleiter, C. H., et al. (2008). Metabonomics in cancer diagnosis: Mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. Biomarkers, 13(4), 435–449.PubMedGoogle Scholar
  116. 116.
    Zheng, Y. F., Yang, J., Zhao, X. J., Feng, B., Kong, H. W., Chen, Y. J., et al. (2005). Urinary nucleosides as biological markers for patients with colorectal cancer. World Journal of Gastroenterology, 11(25), 3871–3876.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Rozalski, R., Gackowski, D., Siomek-Gorecka, A., Starczak, M., Modrzejewska, M., Banaszkiewicz, Z., et al. (2015). Urinary 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine as potential biomarkers in patients with colorectal cancer. Biomarkers, 31, 1–5.Google Scholar
  118. 118.
    Yano, T., Shoji, F., Baba, H., Koga, T., Shiraishi, T., Orita, H., et al. (2009). Significance of the urinary 8-OHdG level as an oxidative stress marker in lung cancer patients. Lung Cancer, 63(1), 111–114.PubMedGoogle Scholar
  119. 119.
    Zhang, Y. R., Shi, L., Wu, H., Tang, D. D., Wang, S. M., Liu, H. M., et al. (2014). Urinary modified nucleosides as novel biomarkers for diagnosis and prognostic monitoring of urothelial bladder cancer. Tumori, 100(6), 660–666.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Swansea University Medical SchoolSwansea UniversitySwanseaUK

Personalised recommendations