Advertisement

A Pilot Exploratory Proteomics Investigation of Mental Fatigue and Mental Energy

  • Emmalyn J. Dupree
  • Aurora Goodwin
  • Costel C. Darie
  • Ali BoolaniEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)

Abstract

Fatigue is a common and poorly understood problem that impacts approximately 45% of the United States (US) population. Fatigue has also been associated with fatigue-related driving accidents, school absences, decline in school performance and negative health outcomes. Fatigue has been linked to many diseases and is consistently underreported in medical care. Despite these high financial and societal costs, fatigue is a poorly understood problem and there is no consensus on how to measure fatigue. Proteomics is one of the most unbiased approach to measure differences in the protein levels from various biological fluids in two conditions, i.e. before and after mental exercise, aka fatigue. There are, however, challenges associated with such analyses: proteomics experiments are usually expensive and time consuming and also require a large number of participants. Here, we performed a proteomics experiment of three (pre- and post-fatigue) samples and also three matched controls (pre- and post-non-fatigue). We found no particular protein that has significant changes in fatigue sample upon treatment. We did note a potential association between changes in mental energy and Annexin A1. However, the study has value simply because it is an extra study in the field of fatigue, but also allows other to correlate our results with their results.

Keywords

Mental fatigue Mental energy Mass spectrometry Proteomics 

Notes

Acknowledgements

We thank the past and present members of the Applied Physiology and Psychology Lab and the Biochemistry & Proteomics Group for the pleasant environment and fruitful discussions.

References

  1. 1.
    Chen, M. K. (1986). The epidemiology of self-perceived fatigue among adults. Preventive Medicine, 15(1), 74–81.PubMedGoogle Scholar
  2. 2.
    Cunningham, T. J., Ford, E. S., Chapman, D. P., Liu, Y., & Croft, J. B. (2015). Independent and joint associations of race/ethnicity and educational attainment with sleep-related symptoms in a population-based US sample. Preventive Medicine, 77, 99–105.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lewis, G., & Wessely, S. (1992). The epidemiology of fatigue: More questions than answers. Journal of Epidemiology and Community Health, 46(2), 92.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ricci, J. A., Chee, E., Lorandeau, A. L., & Berger, J. (2007). Fatigue in the US workforce: Prevalence and implications for lost productive work time. Journal of Occupational and Environmental Medicine, 49(1), 1–10.PubMedGoogle Scholar
  5. 5.
    Taylor, A. H., & Dorn, L. (2006). Stress, fatigue, health, and risk of road traffic accidents among professional drivers: The contribution of physical inactivity. Annual Review of Public Health, 27, 371–391.PubMedGoogle Scholar
  6. 6.
    van Drongelen, A., Boot, C. R., Hlobil, H., Smid, T., & van der Beek, A. J. (2017). Risk factors for fatigue among airline pilots. International Archives of Occupational and Environmental Health, 90(1), 39–47.PubMedGoogle Scholar
  7. 7.
    Bakker, R. J., van de Putte, E. M., Kuis, W., & Sinnema, G. (2009). Risk factors for persistent fatigue with significant school absence in children and adolescents. Pediatrics, 124(1), e89–e95.PubMedGoogle Scholar
  8. 8.
    Fukuda, S., Yamano, E., Joudoi, T., Mizuno, K., Tanaka, M., Kawatani, J., et al. (2010). Effort-reward imbalance for learning is associated with fatigue in school children. Behavioral Medicine, 36(2), 53–62.PubMedGoogle Scholar
  9. 9.
    Samkoff, J. S., & Jacques, C. (1991). A review of studies concerning effects of sleep deprivation and fatigue on residents’ performance. Academic Medicine, 66(11), 687–693.PubMedGoogle Scholar
  10. 10.
    Verbrugge, L. M., & Ascione, F. J. (1987). Exploring the iceberg: Common symptoms and how people care for them. Medical Care, 25, 539–569.PubMedGoogle Scholar
  11. 11.
    Hjollund, N. H., Andersen, J. H., & Bech, P. (2007). Assessment of fatigue in chronic disease: A bibliographic study of fatigue measurement scales. Health and Quality of Life Outcomes, 5(1), 1.Google Scholar
  12. 12.
    Smets, E., Garssen, B., Bonke, B., & De Haes, J. (1995). The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. Journal of Psychosomatic Research, 39(3), 315–325.PubMedGoogle Scholar
  13. 13.
    Ware Jr., J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30, 473–483.PubMedGoogle Scholar
  14. 14.
    Piper, B. F., Dibble, S. L., Dodd, M. J., Weiss, M. C., Slaughter, R. E., & Paul, S. M. (1998). The revised Piper Fatigue Scale: Psychometric evaluation in women with breast cancer. Oncology Nursing Forum, 25, 677–684.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Chalder, T., Berelowitz, G., Pawlikowska, T., Watts, L., Wessely, S., Wright, D., et al. (1993). Development of a fatigue scale. Journal of Psychosomatic Research, 37(2), 147–153.PubMedGoogle Scholar
  16. 16.
    Krupp, L. B., LaRocca, N. G., Muir-Nash, J., & Steinberg, A. D. (1989). The fatigue severity scale: Application to patients with multiple sclerosis and systemic lupus erythematosus. Archives of Neurology, 46(10), 1121–1123.PubMedGoogle Scholar
  17. 17.
    Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. JNCI: Journal of the National Cancer Institute, 85(5), 365–376.PubMedGoogle Scholar
  18. 18.
    Cella, D. (1997). The Functional Assessment of Cancer Therapy-Anemia (FACT-An) Scale: A new tool for the assessment of outcomes in cancer anemia and fatigue. Seminars in Hematology, 34, 13–19.PubMedGoogle Scholar
  19. 19.
    O’Connor, P. J. (2004). Evaluation of four highly cited energy and fatigue mood measures. Journal of Psychosomatic Research, 57(5), 435–441.PubMedGoogle Scholar
  20. 20.
    O’Connor, P. J.. (2006). Mental and physical state and trait energy and fatigue scales [unpublished manual].Google Scholar
  21. 21.
    Curran, S. L., Andrykowski, M. A., & Studts, J. L. (1995). Short form of the Profile of Mood States (POMS-SF): Psychometric information. Psychological Assessment, 7(1), 80.Google Scholar
  22. 22.
    Thayer, R. E. (1986). Activation-deactivation adjective check list: Current overview and structural analysis. Psychological Reports, 58(2), 607–614.Google Scholar
  23. 23.
    Loy, B. D., O’Connor, P. J., & Dishman, R. K. (2013). The effect of a single bout of exercise on energy and fatigue states: A systematic review and meta-analysis. Fatigue: Biomedicine, Health & Behavior, 1(4), 223–242.Google Scholar
  24. 24.
    Loy, B. D., & O’Connor, P. J. (2016). The effect of histamine on changes in mental energy and fatigue after a single bout of exercise. Physiology & Behavior, 153, 7–18.Google Scholar
  25. 25.
    Kumar, N., Wheaton, L. A., Snow, T. K., & Millard-Stafford, M. (2015). Exercise and caffeine improve sustained attention following fatigue independent of fitness status. Fatigue: Biomedicine, Health & Behavior, 3(2), 104–121.Google Scholar
  26. 26.
    Pronk, N. P., Katz, A. S., Lowry, M., & Payfer, J. R. (2012). Peer reviewed: Reducing occupational sitting time and improving worker health: The take-a-stand project, 2011. Preventing Chronic Disease, 9, E154.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ellingson, L. D., Kuffel, A. E., Vack, N. J., & Cook, D. B. (2014). Active and sedentary behaviors influence feelings of energy and fatigue in women. Medicine and Science in Sports and Exercise, 46(1), 192–200.PubMedGoogle Scholar
  28. 28.
    Jacobsen, P. B., Donovan, K. A., Vadaparampil, S. T., & Small, B. J. (2007). Systematic review and meta-analysis of psychological and activity-based interventions for cancer-related fatigue. Health Psychology, 26(6), 660.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kober, K. M., Dunn, L., Mastick, J., Cooper, B., Langford, D., Melisko, M., et al. (2016). Gene expression profiling of evening fatigue in women undergoing chemotherapy for breast cancer. Biological Research for Nursing, 18(4), 370–385.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Harris, S., & Dawson-Hughes, B. (1993). Seasonal mood changes in 250 normal women. Psychiatry Research, 49(1), 77–87.PubMedGoogle Scholar
  31. 31.
    Wells, A. S., Read, N., Uvnas-Moberg, K., & Alster, P. (1997). Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiology & Behavior, 61(5), 679–686.Google Scholar
  32. 32.
    Knutson, K. L., Spiegel, K., Penev, P., & Van Cauter, E. (2007). The metabolic consequences of sleep deprivation. Sleep Medicine Reviews, 11(3), 163–178.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Pilcher, J. J., & Walters, A. S. (1997). How sleep deprivation affects psychological variables related to college students’ cognitive performance. Journal of American College Health, 46(3), 121–126.PubMedGoogle Scholar
  34. 34.
    Gong, S., Sheng, P., Jin, H., He, H., Qi, E., Chen, W., et al. (2014). Effect of methylphenidate in patients with cancer-related fatigue: A systematic review and meta-analysis. PLoS One, 9(1), e84391.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Bennett, A. A., Bakker, A. B., & Field, J. G. (2018). Recovery from work-related effort: A meta-analysis. Journal of Organizational Behavior, 39(3), 262–275.Google Scholar
  36. 36.
    Loy, B. D., Cameron, M. H., & O’Connor, P. J. (2018). Perceived fatigue and energy are independent unipolar states: Supporting evidence. Medical Hypotheses, 113, 46–51.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Boolani, A., O’Connor, P. J., Reed, J., Ma, S., & Mondal, S. (2018). Predictors of feelings of energy differ from predictors of fatigue among graduate health sciences students. Fatigue: Biomedicine, Health & Behavior, 1–17.Google Scholar
  38. 38.
    Nozaki, S., Tanaka, M., Mizuno, K., Ataka, S., Mizuma, H., Tahara, T., et al. (2009). Mental and physical fatigue-related biochemical alterations. Nutrition, 25(1), 51–57.PubMedGoogle Scholar
  39. 39.
    Channaveerappa, D., Lux, J. C., Wormwood, K. L., Heintz, T. A., McLerie, M., Treat, J. A., et al. (2017). Atrial electrophysiological and molecular remodelling induced by obstructive sleep apnoea. Journal of Cellular and Molecular Medicine, 21(9), 2223–2235. Epub 2017/04/13.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ngounou Wetie, A. G., Wormwood, K. L., Russell, S., Ryan, J. P., Darie, C. C., & Woods, A. G. (2015). A pilot proteomic analysis of salivary biomarkers in autism spectrum disorder. Autism Research: Official Journal of the International Society for Autism Research, 8(3), 338–350. Epub 2015/01/30.Google Scholar
  41. 41.
    Aslebagh, R., Channaveerappa, D., Arcaro, K. F., & Darie, C. C. (2018). Comparative two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of human milk to identify dysregulated proteins in breast cancer. Electrophoresis.  https://doi.org/10.1002/elps.201800025. Epub 2018/05/15.Google Scholar
  42. 42.
    Aslebagh, R., Channaveerappa, D., Arcaro, K. F., & Darie, C. C. (2018). Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis, 39(4), 653–665. Epub 2017/12/02.PubMedGoogle Scholar
  43. 43.
    Aslebagh, R., Pfeffer, B. A., Fliesler, S. J., & Darie, C. C. (2016). Mass spectrometry-based proteomics of oxidative stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins. Electrophoresis, 37(20), 2615–2623. Epub 2016/05/18.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Loo, J. A., & Darie, C. C. (2013). Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics, 13(3–4), 538–557. Epub 2012/11/30.Google Scholar
  45. 45.
    Ciregia, F., Giusti, L., Da Valle, Y., Donadio, E., Consensi, A., Giacomelli, C., et al. (2013). A multidisciplinary approach to study a couple of monozygotic twins discordant for the chronic fatigue syndrome: A focus on potential salivary biomarkers. Journal of Translational Medicine, 11(1), 243.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Ciregia, F., Kollipara, L., Giusti, L., Zahedi, R., Giacomelli, C., Mazzoni, M., et al. (2016). Bottom-up proteomics suggests an association between differential expression of mitochondrial proteins and chronic fatigue syndrome. Translational Psychiatry, 6(9), e904.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Baraniuk, J. N., Casado, B., Maibach, H., Clauw, D. J., Pannell, L. K., & Hess, S. (2005). A chronic fatigue syndrome–related proteome in human cerebrospinal fluid. BMC Neurology, 5(1), 22.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Schutzer, S. E., Angel, T. E., Liu, T., Schepmoes, A. A., Clauss, T. R., Adkins, J. N., et al. (2011). Distinct cerebrospinal fluid proteomes differentiate post-treatment lyme disease from chronic fatigue syndrome. PLoS One, 6(2), e17287.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Pihur, V., Datta, S., & Datta, S. (2011). Meta analysis of chronic fatigue syndrome through integration of clinical, gene expression, SNP and proteomic data. Bioinformation, 6(3), 120.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Jensen, K., Goo, Y. A., Yahiaoui, A., Bajwa, S., Goodlett, D., Russo, J., et al. (2014). Identification of fatigue biomarkers in treated and treatment-naive HIV patients: Preliminary results. Biological Research for Nursing, 16(3), 278–287.PubMedGoogle Scholar
  51. 51.
    Minton, O., & Stone, P. C. (2013). The identification of plasma proteins associated with Cancer-Related Fatigue Syndrome (CRFS) in disease-free breast cancer patients using proteomic analysis. Journal of Pain and Symptom Management, 45(5), 868–874.PubMedGoogle Scholar
  52. 52.
    Minton, O., & Stone, P. C. (2010). The use of proteomics as a research methodology for studying cancer-related fatigue: A review. Palliative Medicine, 24(3), 310–316.PubMedGoogle Scholar
  53. 53.
    Zhao, L., Yan, W., Xiang, H., Wang, X., & Qiao, H. (2012). Proteomic investigation of changes in rat skeletal muscle after exercise-induced fatigue. Biological Research, 45(1), 75–80.PubMedGoogle Scholar
  54. 54.
    Bigelman, K. A., Chapman, D. P., Freese, E. C., Trilk, J. L., & Cureton, K. J. (2011). Effects of 6 weeks of quercetin supplementation on energy, fatigue, and sleep in ROTC cadets. Military Medicine, 176(5), 565–572.PubMedGoogle Scholar
  55. 55.
    Boolani, A., Lindheimer, J. B., Loy, B. D., Crozier, S., & O’Connor, P. J. (2017). Acute effects of brewed cocoa consumption on attention, motivation to perform cognitive work and feelings of anxiety, energy and fatigue: A randomized, placebo-controlled crossover experiment. BMC Nutrition, 3(1), 8.Google Scholar
  56. 56.
    Bossie, H. M., Willingham, T. B., Schoick, R. A. V., O’connor, P. J., & McCully, K. K. (2017). Mitochondrial capacity, muscle endurance, and low energy in friedreich ataxia. Muscle & Nerve, 56(4), 773–779.Google Scholar
  57. 57.
    Cook, D. B., O’Connor, P. J., Lange, G., & Steffener, J. (2007). Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage, 36(1), 108–122.PubMedGoogle Scholar
  58. 58.
    Dammann, K. W., Bell, M., Kanter, M., & Berger, A. (2013). Effects of consumption of sucromalt, a slowly digestible carbohydrate, on mental and physical energy questionnaire responses. Nutritional Neuroscience, 16(2), 83–95.PubMedGoogle Scholar
  59. 59.
    Fritz, K. M., & O’Connor, P. J. (2016). Acute exercise improves mood and motivation in young men with ADHD symptoms. Medicine and Science in Sports and Exercise, 48(6), 1153–1160.PubMedGoogle Scholar
  60. 60.
    Gilson, S. F., Saunders, M. J., Moran, C. W., Moore, R. W., Womack, C. J., & Todd, M. K. (2010). Effects of chocolate milk consumption on markers of muscle recovery following soccer training: A randomized cross-over study. Journal of the International Society of Sports Nutrition, 7(1), 19.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Goh, Q., Boop, C. A., Luden, N. D., Smith, A. G., Womack, C. J., & Saunders, M. J. (2012). Recovery from cycling exercise: Effects of carbohydrate and protein beverages. Nutrients, 4(7), 568–584.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Herring, M. P., & O’Connor, P. J. (2009). The effect of acute resistance exercise on feelings of energy and fatigue. Journal of Sports Sciences, 27(7), 701–709.PubMedGoogle Scholar
  63. 63.
    Kline, C. E., Youngstedt, S. D., Devlin, T. M., Lee, A. Y., Zielinski, M. R., Moore, T. A., et al. (2006). Circadian variation in swim performance. Medicine & Science in Sports & Exercise, 38(5), S226–S2S7.Google Scholar
  64. 64.
    Lindheimer, J. B., Loy, B. D., & O’Connor, P. J. (2013). Short-term effects of black pepper (Piper nigrum) and rosemary (Rosmarinus officinalis and Rosmarinus eriocalyx) on sustained attention and on energy and fatigue mood states in young adults with low energy. Journal of Medicinal Food, 16(8), 765–771.PubMedGoogle Scholar
  65. 65.
    Maridakis, V., Herring, M. P., & O’Connor, P. J. (2009). Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to differing doses of caffeine or breakfast. International Journal of Neuroscience, 119(7), 975–994.PubMedGoogle Scholar
  66. 66.
    Maridakis, V., O’Connor, P. J., & Tomporowski, P. D. (2009). Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to morning caffeine alone or in combination with carbohydrate. International Journal of Neuroscience, 119(8), 1239–1258.PubMedGoogle Scholar
  67. 67.
    Moore, R. D., Romine, M. W., O’connor, P. J., & Tomporowski, P. D. (2012). The influence of exercise-induced fatigue on cognitive function. Journal of Sports Sciences, 30(9), 841–850.PubMedGoogle Scholar
  68. 68.
    Ward-Ritacco, C., Poudevigne, M. S., & O’Connor, P. J. (2016). Muscle strengthening exercises during pregnancy are associated with increased energy and reduced fatigue. Journal of Psychosomatic Obstetrics and Gynecology, 37(2), 68–72.PubMedGoogle Scholar
  69. 69.
    Yoon, S., Buckworth, J., Focht, B., & Ko, B. (2013). Feelings of energy, exercise-related self-efficacy, and voluntary exercise participation. Journal of Sport and Exercise Psychology, 35(6), 612–624.PubMedGoogle Scholar
  70. 70.
    Haskell, C. F., Kennedy, D. O., Wesnes, K. A., & Scholey, A. B. (2005). Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology, 179(4), 813–825.PubMedGoogle Scholar
  71. 71.
    Scholey, A. B., & Kennedy, D. O. (2004). Cognitive and physiological effects of an “energy drink”: An evaluation of the whole drink and of glucose, caffeine and herbal flavouring fractions. Psychopharmacology, 176(3–4), 320–330.PubMedGoogle Scholar
  72. 72.
    Scholey, A. B., French, S. J., Morris, P. J., Kennedy, D. O., Milne, A. L., & Haskell, C. F. (2010). Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. Journal of Psychopharmacology, 24(10), 1505–1514.PubMedGoogle Scholar
  73. 73.
    Pilcher, J. J., & Huffcutt, A. I. (1996). Effects of sleep deprivation on performance: A meta-analysis. Sleep, 19(4), 318–326.PubMedGoogle Scholar
  74. 74.
    Graziose, M. M., Piehowski, K. E., Shlisky, J. D., & Nickols-Richardson, S. M. (2012). Relative validity of foot-to-foot BIA (Tanita TBF-410GS) vs DXA in a weight-loss trial of overweight and obese women. International Journal of Body Composition Research, 10(4), 101–106.Google Scholar
  75. 75.
    Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213.PubMedGoogle Scholar
  76. 76.
    Fujiwara, K., & Matsuoka, A. (1995). Improvement of glucose tolerance by low-viscosity, water-soluble dietary fiber, indigestible dextrin. The Japanese Journal of Nutrition and Dietetics, 53(6), 361–368.Google Scholar
  77. 77.
    Hasegawa, H., Shirohara, H., Okabayashi, Y., Nakamura, T., Fujii, M., Koide, M., et al. (1996). Oral glucose ingestion stimulates cholecystokinin release in normal subjects and patients with non-insulin-dependent diabetes mellitus. Metabolism: Clinical and Experimental, 45(2), 196–202.Google Scholar
  78. 78.
    Miki, T., Lee, E. Y., Eguchi, A., Sakurai, K., Sawabe, Y., Yoshida, T., et al. (2018). Accelerated oligosaccharide absorption and altered serum metabolites during oral glucose tolerance test in young Japanese with impaired glucose tolerance. Journal of Diabetes Investigation, 9(3), 512–521.Google Scholar
  79. 79.
    Vernon, S. D., Whistler, T., Aslakson, E., Rajeevan, M., & Reeves, W. C. (2006). Challenges for molecular profiling of chronic fatigue syndrome. Pharmacogenomics, 7(2), 211–218.PubMedGoogle Scholar
  80. 80.
    Shephard, R. J. (2001). Chronic fatigue syndrome – An update. Sports Medicine, 31(3), 167–194.PubMedGoogle Scholar
  81. 81.
    Fukuda, K., Nisenbaum, R., Stewart, G., Thompson, W. W., Robin, L., Washko, R. M., et al. (1998). Chronic multisymptom illness affecting Air Force veterans of the Gulf War. JAMA, 280(11), 981–988.PubMedGoogle Scholar
  82. 82.
    Gaudino, E. A., Coyle, P. K., & Krupp, L. B. (1997). Post-Lyme syndrome and chronic fatigue syndrome – Neuropsychiatric similarities and differences. Archives of Neurology, 54(11), 1372–1376.PubMedGoogle Scholar
  83. 83.
    Pihur, V., & Datta, S. (2011). Meta analysis of Chronic Fatigue Syndrome through integration of clinical, gene expression, SNP and proteomic data. Bioinformation, 6(3), 120–124. Epub 2011/05/18.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Emmalyn J. Dupree
    • 1
  • Aurora Goodwin
    • 2
  • Costel C. Darie
    • 1
  • Ali Boolani
    • 2
    Email author
  1. 1.Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA
  2. 2.Applied Physiology and Psychology Lab, Department of Physical TherapyClarkson UniversityPotsdamUSA

Personalised recommendations