Exploration of Nicotine Metabolism in Paenarthrobacter nicotinovorans pAO1 by Microbial Proteomics

  • Marius MihăşanEmail author
  • Cornelia Babii
  • Roshanak Aslebagh
  • Devika Channaveerappa
  • Emmalyn J. Dupree
  • Costel C. Darie
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Proteomics, or the large-scale study of proteins, is a post-genomics field that, together with transcriptomics and metabolomics, has moved the study of bacteria to a new era based on system-wide understanding of bacterial metabolic and regulatory networks. The study of bacterial proteins or microbial proteomics has found a wide array of applications in many fields of microbiology, from food, clinical, and industrial microbiology to microbial ecology and physiology. The current chapter makes a brief technical introduction into the available approaches for the large-scale study of bacterial proteins using mass-spectrometry. Furthermore, the advantages and disadvantages of using bacteria for proteomics studies are indicated as well as several example studies where MS-based bacterial proteomics had a fundamental role in deciphering the scientific question. Finally, the proteomics study of nicotine catabolism in Paenarthrobacter nicotinovorans pAO1 using nanoLC–MS/MS is given as an in-depth example for possible applications of microbial proteomics.

The nicotine degradation pathway functioning in Paenarthrobacter nicotinovorans is encoded by the catabolic megaplasmid pAO1 that contains about 40 nicotine-related genes making out the nic-gens cluster. Despite the promising biotechnological potential for the production of green-chemicals, only half of the nic-genes have been experimentally linked to nicotine. In an attempt to systematically identify all the proteins involved in nicotine degradation, a gel-based proteomics approach was used to identify a total of 801 proteins when Paenarthrobacter nicotinovorans was grown on three carbon sources: citrate, nicotine and nicotine and citrate. The differences in protein abundance showed that the bacterium is able to switch between deamination and demethylation in the lower nicotine pathway based on the available C source. Several pAO1 putative genes including a hypothetical polyketide cyclase have been shown to have a nicotine-dependent expression and we hypothesize that the polyketide cyclase would hydrolyze the N1-C6 bond from the pyridine ring with the formation of alpha-keto-glutaramate. Two chromosomal proteins, a malate dehydrogenase, and a d-3-phosphoglycerate dehydrogenase were shown to be strongly upregulated when nicotine was the sole carbon source and could be related to the production of the alpha-keto-glutaramate by the polyketide cyclase.


Microbial proteomics Mass spectrometry Nicotine metabolism Paenarthrobacter nicotinovorans 



Two-dimensional polyacrylamide gel electrophoresis


Electrospray ionization tandem mass spectrometry


High performance liquid chromatography


Isoelectric focusing


Liquid chromatography tandem mass spectrometry


Matrix-assisted laser desorption/ionization tandem mass spectrometry


Matrix-assisted laser desorption/ionization Time-of-flight mass spectrometry


Nicotine-degrading microorganisms


Peptide-mass fingerprint


Post-translational modifications


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


Type IV secretion system



We thank the past and present members of BioActive Group and the Biochemistry & Proteomics Group for the pleasant environment and fruitful discussions. MM was supported by the Fulbright Senior Postdoctoral Fellowship awarded by the Romania-USA Fulbright Commission to MM (guest) and CCD (host).


  1. 1.
    Neidhardt, F. C. (2011). How microbial proteomics got started. Proteomics, 11(15), 2943–2946.PubMedGoogle Scholar
  2. 2.
    Chao, T. C., & Hansmeier, N. (2012). The current state of microbial proteomics: Where we are and where we want to go. Proteomics, 12(4–5), 638–650.PubMedGoogle Scholar
  3. 3.
    O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry, 250(10), 4007–4021.Google Scholar
  4. 4.
    Anderson, N. L., & Anderson, N. G. (1998). Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis, 19(11), 1853–1861.PubMedGoogle Scholar
  5. 5.
    Blackstock, W. P., & Weir, M. P. (1999). Proteomics: Quantitative and physical mapping of cellular proteins. Trends in Biotechnology, 17(3), 121–127.PubMedGoogle Scholar
  6. 6.
    Han, X. M., Aslanian, A., & Yates, J. R. (2008). Mass spectrometry for proteomics. Current Opinion in Chemical Biology, 12(5), 483–490.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Perkins, D. N., Pappin, D. J. C., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18), 3551–3567.PubMedGoogle Scholar
  8. 8.
    Soufi, Y., & Soufi, B. (2016). Mass spectrometry-based bacterial proteomics: Focus on dermatologic microbial pathogens. Frontiers in Microbiology, 7, 181.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chenau, J., Michelland, S., Sidibe, J., & Seve, M. (2008). Peptides OFFGEL electrophoresis: A suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. Proteome Science, 6, 9.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Perez-Llarena, F. J., & Bou, G. (2016). Proteomics as a tool for studying bacterial virulence and antimicrobial resistance. Frontiers in Microbiology, 7, 410.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Graham, R. L., Graham, C., & McMullan, G. (2007). Microbial proteomics: A mass spectrometry primer for biologists. Microbial Cell Factories, 6, 26.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Stekhoven, D. J., Omasits, U., Quebatte, M., Dehio, C., & Ahrens, C. H. (2014). Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. Journal of Proteomics, 99, 123–137.PubMedGoogle Scholar
  13. 13.
    Land, M., Hauser, L., Jun, S. R., Nookaew, I., Leuze, M. R., Ahn, T. H., et al. (2015). Insights from 20 years of bacterial genome sequencing. Functional & Integrative Genomics, 15(2), 141–161.Google Scholar
  14. 14.
    Bennett, G. M., & Moran, N. A. (2013). Small, smaller, smallest: The origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biology and Evolution, 5(9), 1675–1688.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Han, K., Li, Z. F., Peng, R., Zhu, L. P., Zhou, T., Wang, L. G., et al. (2013). Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Scientific Reports, 3, 2101.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Metzker, M. L. (2010). Applications of next-generation sequencing sequencing technologies - the next generation. Nature Reviews Genetics, 11(1), 31–46.PubMedGoogle Scholar
  17. 17.
    Weinstock, G. M. (2000). Genomics and bacterial pathogenesis. Emerging Infectious Diseases, 6(5), 496–504.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Woodson, S. A. (1998). Ironing out the kinks: Splicing and translation in bacteria. Genes & Development, 12(9), 1243–1247.Google Scholar
  19. 19.
    Hausner, G., Hafez, M., & Edgell, D. R. (2014). Bacterial group I introns: Mobile RNA catalysts. Mobile DNA, 5(1), 8.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Potel, C. M., Lin, M. H., Heck, A. J. R., & Lemeer, S. (2018). Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nature Methods, 15(3), 187–190.PubMedGoogle Scholar
  21. 21.
    Cain, J. A., Solis, N., & Cordwell, S. J. (2014). Beyond gene expression: The impact of protein post-translational modifications in bacteria. Journal of Proteomics, 97, 265–286.PubMedGoogle Scholar
  22. 22.
    Perler, F. B., Davis, E. O., Dean, G. E., Gimble, F. S., Jack, W. E., Neff, N., et al. (1994). Protein splicing elements - Inteins and Exteins - a definition of terms and recommended nomenclature. Nucleic Acids Research, 22(7), 1125–1127.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Shah, N. H., & Muir, T. W. (2014). Inteins: Nature’s gift to protein chemists. Chemical Science, 5(2), 446–461.PubMedGoogle Scholar
  24. 24.
    Chen, B., Zhang, D., Wang, X., Ma, W., Deng, S., Zhang, P., et al. (2017). Proteomics progresses in microbial physiology and clinical antimicrobial therapy. European Journal of Clinical Microbiology & Infectious Diseases, 36(3), 403–413.Google Scholar
  25. 25.
    Otto, A., Bernhardt, J., Hecker, M., & Becher, D. (2012). Global relative and absolute quantitation in microbial proteomics. Current Opinion in Microbiology, 15(3), 364–372.PubMedGoogle Scholar
  26. 26.
    Chaussee, M. A., McDowell, E. J., Rieck, L. D., Callegari, E. A., & Chaussee, M. S. (2006). Proteomic analysis of a penicillin-tolerant rgg mutant strain of Streptococcus pyogenes. Journal of Antimicrobial Chemotherapy, 58(4), 752–759.PubMedGoogle Scholar
  27. 27.
    Tiwari, V., Vashistt, J., Kapil, A., & Moganty, R. R. (2012). Comparative proteomics of inner membrane fraction from carbapenem-resistant Acinetobacter baumannii with a reference strain. PLoS One, 7(6), e39451.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen, H. B., Liu, Y. L., Zhao, C. J., Xiao, D., Zhang, J. Z., Zhang, F. F., et al. (2013). Comparative proteomics-based identification of genes associated with glycopeptide resistance in clinically derived heterogeneous vancomycin-intermediate Staphylococcus aureus strains. PLoS One, 8(6), e66880.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Straus, S. K., & Hancock, R. E. (2006). Mode of action of the new antibiotic for gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides. Biochimica et Biophysica Acta, 1758(9), 1215–1223.PubMedGoogle Scholar
  30. 30.
    Maria-Neto, S., Candido, E. D., Rodrigues, D. R., de Sousa, D. A., da Silva, E. M., de Moraes, L. M. P., et al. (2012). Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrobial Agents and Chemotherapy, 56(4), 1714–1724.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Fernandez-Reyes, M., Rodriguez-Falcon, M., Chiva, C., Pachon, J., Andreu, D., & Rivas, L. (2009). The cost of resistance to colistin in Acinetobacter baumannii: A proteomic perspective. Proteomics, 9(6), 1632–1645.PubMedGoogle Scholar
  32. 32.
    Vranakis, I., De Bock, P. J., Papadioti, A., Tselentis, Y., Gevaert, K., Tsiotis, G., et al. (2012). Quantitative proteome profiling of C. burnetii under tetracycline stress conditions. PLoS One, 7(3), e33599.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Biot, F. V., Valade, E., Garnotel, E., Chevalier, J., Villard, C., Thibault, F. M., et al. (2011). Involvement of the efflux pumps in chloramphenicol selected strains of Burkholderia thailandensis: Proteomic and mechanistic evidence. PLoS One, 6(2), e16892.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rao, A. A., Patkari, M., Reddy, P. J., Srivastava, R., Pendharkar, N., Rapole, S., et al. (2014). Proteomic analysis of Streptomyces coelicolor in response to ciprofloxacin challenge. Journal of Proteomics, 97, 222–234.PubMedGoogle Scholar
  35. 35.
    Beck, M., Malmstrom, J. A., Lange, V., Schmidt, A., Deutsch, E. W., & Aebersold, R. (2009). Visual proteomics of the human pathogen Leptospira interrogans. Nature Methods, 6(11), 817–U55.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ansong, C., Schrimpe-Rutledge, A. C., Mitchell, H. D., Chauhan, S., Jones, M. B., Kim, Y. M., et al. (2013). A multi-omic systems approach to elucidating Yersinia virulence mechanisms. Molecular BioSystems, 9(1), 44–54.PubMedGoogle Scholar
  37. 37.
    Mirrashidi, K. M., Elwell, C. A., Verschueren, E., Johnson, J. R., Frando, A., Von Dollen, J., et al. (2015). Global mapping of the inc-human interactome reveals that retromer restricts chlamydia infection. Cell Host & Microbe, 18(1), 109–121.Google Scholar
  38. 38.
    Boulund, F., Karlsson, R., Gonzales-Siles, L., Johnning, A., Karami, N., Al-Bayati, O., et al. (2017). Typing and characterization of bacteria using bottom-up tandem mass spectrometry proteomics. Molecular & Cellular Proteomics, 16(6), 1052–1063.Google Scholar
  39. 39.
    Demirev, P. A., & Fenselau, C. (2008). Mass spectrometry for rapid characterization of microorganisms. Annual Review of Analytical Chemistry, 1, 71–93.PubMedGoogle Scholar
  40. 40.
    Charretier, Y., Dauwalder, O., Franceschi, C., Degout-Charmette, E., Zambardi, G., Cecchini, T., et al. (2015). Rapid bacterial identification, resistance, virulence and type profiling using selected reaction monitoring mass spectrometry. Scientific Reports, 5, 13944.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Gil, C., & Monteoliva, L. (2014). Trends in microbial proteomics. Journal of Proteomics, 97, 1–2.PubMedGoogle Scholar
  42. 42.
    Wilmes, P., & Bond, P. L. (2004). The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology, 6(9), 911–920.PubMedGoogle Scholar
  43. 43.
    Herbst, F. A., Lunsmann, V., Kjeldal, H., Jehmlich, N., Tholey, A., von Bergen, M., et al. (2016). Enhancing metaproteomics—the value of models and defined environmental microbial systems. Proteomics, 16(5), 783–798.PubMedGoogle Scholar
  44. 44.
    Haange, S. B., Oberbach, A., Schlichting, N., Hugenholtz, F., Smidt, H., von Bergen, M., et al. (2012). Metaproteome analysis and molecular genetics of rat intestinal microbiota reveals section and localization resolved species distribution and enzymatic functionalities. Journal of Proteome Research, 11(11), 5406–5417.PubMedGoogle Scholar
  45. 45.
    Vizcaino, J. A., Cote, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., et al. (2013). The PRoteomics IDEntifications (PRIDE) database and associated tools: Status in 2013. Nucleic Acids Research, 41(Database issue), D1063–D1069.PubMedGoogle Scholar
  46. 46.
    Broadbent, J. A., Broszczak, D. A., Tennakoon, I. U. K., & Huygens, F. (2016). Pan-proteomics, a concept for unifying quantitative proteome measurements when comparing closely-related bacterial strains. Expert Review of Proteomics, 13(4), 355–365.PubMedGoogle Scholar
  47. 47.
    Fisunov, G. Y., Alexeev, D. G., Bazaleev, N. A., Ladygina, V. G., Galyamina, M. A., Kondratov, I. G., et al. (2011). Core proteome of the minimal cell: Comparative proteomics of three mollicute species. PLoS One, 6(7), e21964.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Yang, L., Tan, J., O’Brien, E. J., Monk, J. M., Kim, D., Li, H. J., et al. (2015). Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10810–10815.Google Scholar
  49. 49.
    Decker, K., Eberwein, H., Gries, F. A., & Bruehmueller, M. (1960). On the degradation of nicotine by bacterial enzymes. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 319, 279–282.PubMedGoogle Scholar
  50. 50.
    Kodama, Y., Yamamoto, H., Amano, N., & Amachi, T. (1992). Reclassification of two strains of Arthrobacter oxydans and proposal of Arthrobacter nicotinovorans sp. nov. International Journal of Systematic Bacteriology, 42(2), 234–239.PubMedGoogle Scholar
  51. 51.
    Busse, H. J. (2016). Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. International Journal of Systematic and Evolutionary Microbiology, 66, 9–37.PubMedGoogle Scholar
  52. 52.
    Igloi, G. L., & Brandsch, R. (2003). Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. Journal of Bacteriology, 185(6), 1976–1986.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu, J. L., Ma, G. H., Chen, T., Hou, Y., Yang, S. H., Zhang, K. Q., et al. (2015). Nicotine-degrading microorganisms and their potential applications. Applied Microbiology and Biotechnology, 99(9), 3775–3785.PubMedGoogle Scholar
  54. 54.
    Hritcu, L., & Mihasan, M. (2019). 6-hydroxy-l-nicotine and memory impairment. In V. Preedy (Ed.), The neuroscience of nicotine: Mechanisms and treatment. Academic Press.Google Scholar
  55. 55.
    Hritcu, L., Ionita, R., Motei, D. E., Babii, C., Stefan, M., & Mihasan, M. (2017). Nicotine versus 6-hydroxy-l-nicotine against chlorisondamine induced memory impairment and oxidative stress in the rat hippocampus. Biomedicine & Pharmacotherapy, 86, 102–108.Google Scholar
  56. 56.
    Wang, S. N., Xu, P., Tang, H. Z., Meng, J., Liu, X. L., & Ma, C. Q. (2005). “Green” route to 6-hydroxy-3-succinoyl-pyridine from (S)-nicotine of tobacco waste by whole cells of a Pseudomonas sp. Environmental Science & Technology, 39(17), 6877–6880.Google Scholar
  57. 57.
    Wang, W. W., Xu, P., & Tang, H. Z. (2015). Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste. Scientific Reports, 5, 16411.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Yu, W. J., Wang, R. S., Li, H. L., Liang, J. Y., Wang, Y. Y., Huang, H. Y., et al. (2017). Green route to synthesis of valuable chemical 6-hydroxynicotine from nicotine in tobacco wastes using genetically engineered agrobacterium tumefaciens S33. Biotechnology for Biofuels, 10, 288.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Brandsch, R. (2006). Microbiology and biochemistry of nicotine degradation. Applied Microbiology and Biotechnology, 69(5), 493–498.PubMedGoogle Scholar
  60. 60.
    Chiribau, C. B., Mihasan, M., Ganas, P., Igloi, G. L., Artenie, V., & Brandsch, R. (2006). Final steps in the catabolism of nicotine. The FEBS Journal, 273(7), 1528–1536.PubMedGoogle Scholar
  61. 61.
    Ganas, P., Igloi, G. L., & Brandsch, R. (2009). The megaplasmid pAO1 of Arthrobacter nicotinovorans and nicotine catabolism. In E. Schwartz (Ed.), Microbial megaplasmids (pp. 271–282).Google Scholar
  62. 62.
    Vandera, E., Samiotaki, M., Parapouli, M., Panayotou, G., & Koukkou, A. I. (2015). Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose. Journal of Proteomics, 113, 73–89.PubMedGoogle Scholar
  63. 63.
    Wetie, A. G. N., Wormwood, K. L., Charette, L., Ryan, J. P., Woods, A. G., & Darie, C. C. (2015). Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with autism spectrum disorder. Journal of Cellular and Molecular Medicine, 19(11), 2664–2678.Google Scholar
  64. 64.
    Channaveerappa, D., Lux, J. C., Wormwood, K. L., Heintz, T. A., McLerie, M., Treat, J. A., et al. (2017). Atrial electrophysiological and molecular remodelling induced by obstructive sleep apnoea. Journal of Cellular and Molecular Medicine, 21(9), 2223–2235.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Maor, R., Jones, A., Nuhse, T. S., Studholme, D. J., Peck, S. C., & Shirasu, K. (2007). Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Molecular & Cellular Proteomics, 6(4), 601–610.Google Scholar
  66. 66.
    Delahunty, C. M., & Yates, J. R. (2007). MudPIT: Multidimensional protein identification technology. BioTechniques, 43(5), 563–56+.PubMedGoogle Scholar
  67. 67.
    Mongodin, E. F., Shapir, N., Daugherty, S. C., Deboy, R. T., Emerson, J. B., Shvartzbeyn, A., et al. (2006). Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genetics, 2(12), 2094–2106.Google Scholar
  68. 68.
    Meng, J., Sun, X., Li, S., & Liang, H. (2017). Draft genome sequence of Paenarthrobacter nicotinovorans Hce-1. Genome Announcements, 5(30), e00727–e00717.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Oren, A., & Garrity, G. M. (2016). Notification that new names of prokaryotes, new combinations, and new taxonomic opinions have appeared in volume 66, part 2, of the IJSEM (vol 66, pg 1916, 2016). International Journal of Systematic and Evolutionary Microbiology, 66, 2455–2455.PubMedGoogle Scholar
  70. 70.
    Unell, M., Abraham, P. E., Shah, M., Zhang, B., Ruckert, C., VerBerkmoes, N. C., et al. (2009). Impact of phenolic substrate and growth temperature on the Arthrobacter chlorophenolicus proteome. Journal of Proteome Research, 8(4), 1953–1964.PubMedGoogle Scholar
  71. 71.
    Burnett, B. J., Altman, R. B., Ferguson, A., Wasserman, M. R., Zhou, Z., & Blanchard, S. C. (2014). Direct evidence of an elongation factor-Tu/Ts.GTP.Aminoacyl-tRNA quaternary complex. Journal of Biological Chemistry, 289(34), 23917–23927.PubMedGoogle Scholar
  72. 72.
    Zeilstraryalls, J., Fayet, O., & Georgopoulos, C. (1991). The universally conserved Groe (Hsp60) chaperonins. Annual Review of Microbiology, 45, 301–325.Google Scholar
  73. 73.
    Ganas, P., Mihasan, M., Igloi, G. L., & Brandsch, R. (2007). A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. Microbiology, 153, 1546–1555.PubMedGoogle Scholar
  74. 74.
    Chiribau, C. B., Sandu, C., Fraaije, M., Schiltz, E., & Brandsch, R. (2004). A novel gamma-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1. European Journal of Biochemistry, 271(23–24), 4677–4684.PubMedGoogle Scholar
  75. 75.
    Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., et al. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research, 44(D1), D471–D480.PubMedGoogle Scholar
  76. 76.
    Kurnasov, O., Jablonski, L., Polanuyer, B., Dorrestein, P., Begley, T., & Osterman, A. (2003). Aerobic tryptophan degradation pathway in bacteria: Novel kynurenine formamidase. FEMS Microbiology Letters, 227(2), 219–227.PubMedGoogle Scholar
  77. 77.
    Cobzaru, C., Ganas, P., Mihasan, M., Schleberger, P., & Brandsch, R. (2011). Homologous gene clusters of nicotine catabolism, including a new omega-amidase for alpha-ketoglutaramate, in species of three genera of gram-positive bacteria. Research in Microbiology, 162(3), 285–291.PubMedGoogle Scholar
  78. 78.
    Vaitekunas, J., Gasparaviciute, R., Rutkiene, R., Tauraite, D., & Meskys, R. (2016). A 2-hydroxypyridine catabolism pathway in Rhodococcus rhodochrous strain PY11. Applied and Environmental Microbiology, 82(4), 1264–1273.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Fan, J., Teng, X., Liu, L., Mattaini, K. R., Looper, R. E., Vander Heiden, M. G., et al. (2015). Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chemical Biology, 10(2), 510–516.PubMedGoogle Scholar
  80. 80.
    Mihasan, M., Chiribau, C. B., Friedrich, T., Artenie, V., & Brandsch, R. (2007). An NAD(P)H-nicotine blue oxidoreductase is part of the nicotine regulon and may protect Arthrobacter nicotinovorans from oxidative stress during nicotine catabolism. Applied and Environmental Microbiology, 73(8), 2479–2485.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kallimanis, A., Kavakiotis, K., Perisynakis, A., Sproer, C., Pukall, R., Drainas, C., et al. (2009). Arthrobacter phenanthrenivorans sp nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp strain Sphe3. International Journal of Systematic and Evolutionary Microbiology, 59, 275–279.PubMedGoogle Scholar
  82. 82.
    Sahoo, N. K., Pakshirajan, K., & Ghosh, P. K. (2010). Enhancing the biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6 via medium development. International Biodeterioration & Biodegradation, 64(6), 474–480.Google Scholar
  83. 83.
    Borodina, E., Kelly, D. P., Schumann, P., Rainey, F. A., Ward-Rainey, N. L., & Wood, A. P. (2002). Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp nov., Arthrobacter methylotrophus sp nov., and Hyphomicrobium sulfonivorans sp. Archives of Microbiology, 177(2), 173–183.PubMedGoogle Scholar
  84. 84.
    Sagarkar, S., Bhardwaj, P., Storck, V., Devers-Lamrani, M., Martin-Laurent, F., & Kapley, A. (2016). s-triazine degrading bacterial isolate Arthrobacter sp AK-YN10, a candidate for bioaugmentation of atrazine contaminated soil. Applied Microbiology and Biotechnology, 100(2), 903–913.PubMedGoogle Scholar
  85. 85.
    Mihasan, M. (2015). Bioinformatics-based molecular classification of Arthrobacter plasmids. Cellular & Molecular Biology Letters, 20(4), 612–625.Google Scholar
  86. 86.
    Mihasan, M., & Brandsch, R. (2013). pAO1 of Arthrobacter nicotinovorans and the spread of catabolic traits by horizontal gene transfer in gram-positive soil Bacteria. Journal of Molecular Evolution, 77(1–2), 22–30.PubMedGoogle Scholar
  87. 87.
    Mihasan, M., & Brandsch, R. (2016). A predicted T4 secretion system and conserved DNA-repeats identified in a subset of related Arthrobacter plasmids. Microbiological Research, 191, 32–37.PubMedGoogle Scholar
  88. 88.
    Meyer, R. R., & Laine, P. S. (1990). The single-stranded DNA-binding protein of Escherichia-Coli. Microbiological Reviews, 54(4), 342–380.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marius Mihăşan
    • 1
    • 2
    Email author
  • Cornelia Babii
    • 1
  • Roshanak Aslebagh
    • 2
  • Devika Channaveerappa
    • 2
  • Emmalyn J. Dupree
    • 2
  • Costel C. Darie
    • 2
  1. 1.BioActive Group, Department of BiologyAlexandru Ioan Cuza University of IaşiIasiRomania
  2. 2.Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA

Personalised recommendations