Advertisement

Mass Spectrometry-Based Biomarkers in Drug Development

  • Michelle R. Robinson
  • Ronald A. Miller
  • Daniel S. SpellmanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)

Abstract

Advances in mass spectrometry, proteomics, protein bioanalytical approaches, and biochemistry have led to a rapid evolution and expansion in the area of mass spectrometry-based biomarker discovery and development. The last decade has also seen significant progress in establishing accepted definitions, guidelines, and criteria for the analytical validation, acceptance and qualification of biomarkers. These advances have coincided with a decreased return on investment for pharmaceutical research and development and an increasing need for better early decision making tools. Empowering development teams with tools to measure a therapeutic interventions impact on disease state and progression, measure target engagement and to confirm predicted pharmacodynamic effects is critical to efficient data-driven decision making. Appropriate implementation of a biomarker or a combination of biomarkers can enhance understanding of a drugs mechanism, facilitate effective translation from the preclinical to clinical space, enable early proof of concept and dose selection, and increases the efficiency of drug development. Here we will provide descriptions of the different classes of biomarkers that have utility in the drug development process as well as review specific, protein-centric, mass spectrometry-based approaches for the discovery of biomarkers and development of targeted assays to measure these markers in a selective and analytically precise manner.

Keywords

Mass spectrometry Proteomics Biomarkers Targeted quantitation Drug development 

References

  1. 1.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95.Google Scholar
  2. 2.
    Institute Of Medicine (US) Forum On Drug Discovery, D. A. T (2009) Accelerating the development of biomarkers for drug safety: workshop summary. The National Academies Collection: reports funded by National Institutes of Health. National Academies Press (US), Washington.Google Scholar
  3. 3.
    Rifai, N., Gillette, M. A., & Carr, S. A. (2006). Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nature Biotechnology, 24, 971–983.  https://doi.org/10.1038/nbt1235.CrossRefGoogle Scholar
  4. 4.
    Chung, C., & Christianson, M. (2014). Predictive and prognostic biomarkers with therapeutic targets in breast, colorectal, and non-small cell lung cancers: A systemic review of current development, evidence, and recommendation. Journal of Oncology Pharmacy Practice, 20, 11–28.  https://doi.org/10.1177/1078155212474047.CrossRefPubMedGoogle Scholar
  5. 5.
    Mor, G., Visintin, I., Lai, Y., Zhao, H., Schwartz, P., Rutherford, T., Yue, L., Bray-Ward, P., & Ward, D. C. (2005). Serum protein markers for early detection of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 102, 7677–7682.  https://doi.org/10.1073/pnas.0502178102.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tello-Montoliu, A., Marín, F., Roldán, V., Mainar, L., López, M. T., Sogorb, F., Vicente, V., & Lip, G. Y. H. (2007). A multimarker risk stratification approach to non-ST elevation acute coronary syndrome: Implications of troponin T, CRP, NT pro-BNP and fibrin D-dimer levels. Journal of Internal Medicine, 262, 651–658.  https://doi.org/10.1111/j.1365-2796.2007.01871.x.CrossRefPubMedGoogle Scholar
  7. 7.
    Peters, K. E., Walters, C. C., & Moldowan, J. M. (2007). The biomarker guide: Volume 1, biomarkers and isotopes in the environment and human history. Cambridge: Cambridge University Press.Google Scholar
  8. 8.
    Frank, R., & Hargreaves, R. (2003). Clinical biomarkers in drug discovery and development. Nature Reviews. Drug Discovery, 2, 566–580.  https://doi.org/10.1038/nrd1130.CrossRefPubMedGoogle Scholar
  9. 9.
    Danesh, J., Wheeler, J. G., Hirschfield, G. M., Eda, S., Eiriksdottir, G., Rumley, A., Lowe, G. D. O., Pepys, M. B., & Gudnason, V. (2004). C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. The New England Journal of Medicine, 350, 1387–1397.  https://doi.org/10.1056/NEJMoa032804.CrossRefPubMedGoogle Scholar
  10. 10.
    Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K. J., Rubin, M. A., & Chinnaiyan, A. M. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature, 412, 822–826.  https://doi.org/10.1038/35090585.CrossRefPubMedGoogle Scholar
  11. 11.
    Carser, J. E., Quinn, J. E., Michie, C. O., O’Brien, E. J., McCluggage, W. G., Maxwell, P., Lamers, E., Lioe, T. F., Williams, A. R. W., Kennedy, R. D., Gourley, C., & Harkin, D. P. (2011). BRCA1 is both a prognostic and predictive biomarker of response to chemotherapy in sporadic epithelial ovarian cancer. Gynecologic Oncology, 123, 492–498.  https://doi.org/10.1016/j.ygyno.2011.08.017.CrossRefPubMedGoogle Scholar
  12. 12.
    Gainor, J. F. (2017). Programmed death-ligand 1 testing in patients with non-small cell lung cancer: Ready for prime time? Other. Cancer Cytopathology, 125, 591–593.  https://doi.org/10.1002/cncy.21882.CrossRefPubMedGoogle Scholar
  13. 13.
    Breitling, R. (2006). Biological microarray interpretation: The rules of engagement. Biochimica et Biophysica Acta, 1759, 319–327.  https://doi.org/10.1016/j.bbaexp.2006.06.003.CrossRefPubMedGoogle Scholar
  14. 14.
    Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery. American Journal of Human Genetics, 90, 7–24.  https://doi.org/10.1016/j.ajhg.2011.11.029.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ng, P. C., & Kirkness, E. F. (2010). Whole genome sequencing. Methods in Molecular Biology (Clifton, NJ), 628, 215–226.  https://doi.org/10.1007/978-1-60327-367-1_12.CrossRefGoogle Scholar
  16. 16.
    Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198–207.  https://doi.org/10.1038/nature01511.CrossRefGoogle Scholar
  17. 17.
    Marquette, C. A., Corgier, B. P., & Blum, L. J. (2012). Recent advances in multiplex immunoassays. Bioanalysis, 4, 927–936.  https://doi.org/10.4155/bio.12.56.CrossRefPubMedGoogle Scholar
  18. 18.
    Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E. N., Carter, J., Dalby, A. B., Eaton, B. E., Fitzwater, T., Flather, D., Forbes, A., Foreman, T., Fowler, C., Gawande, B., Goss, M., Gunn, M., Gupta, S., Halladay, D., Heil, J., Heilig, J., Hicke, B., Husar, G., Janjic, N., Jarvis, T., Jennings, S., Katilius, E., Keeney, T. R., Kim, N., Koch, T. H., Kraemer, S., Kroiss, L., Le, N., Levine, D., Lindsey, W., Lollo, B., Mayfield, W., Mehan, M., Mehler, R., Nelson, S. K., Nelson, M., Nieuwlandt, D., Nikrad, M., Ochsner, U., Ostroff, R. M., Otis, M., Parker, T., Pietrasiewicz, S., Resnicow, D. I., Rohloff, J., Sanders, G., Sattin, S., Schneider, D., Singer, B., Stanton, M., Sterkel, A., Stewart, A., Stratford, S., Vaught, J. D., Vrkljan, M., Walker, J. J., Watrobka, M., Waugh, S., Weiss, A., Wilcox, S. K., Wolfson, A., Wolk, S. K., Zhang, C., & Zichi, D. (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One, 5, e15004.  https://doi.org/10.1371/journal.pone.0015004.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chandra, H., Reddy, P. J., & Srivastava, S. (2011). Protein microarrays and novel detection platforms. Expert Review of Proteomics, 8, 61–79.  https://doi.org/10.1586/epr.10.99.CrossRefPubMedGoogle Scholar
  20. 20.
    O’Connor, J. P. B., Jackson, A., Asselin, M.-C., Buckley, D. L., Parker, G. J. M., & Jayson, G. C. (2008). Quantitative imaging biomarkers in the clinical development of targeted therapeutics: Current and future perspectives. The Lancet Oncology, 9, 766–776.  https://doi.org/10.1016/S1470-2045(08)70196-7.CrossRefPubMedGoogle Scholar
  21. 21.
    Avorn, J. (2015). The $2.6 billion pill—Methodologic and policy considerations. The New England Journal of Medicine, 372, 1877–1879.  https://doi.org/10.1056/NEJMp1500848.CrossRefPubMedGoogle Scholar
  22. 22.
    DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20–33.  https://doi.org/10.1016/j.jhealeco.2016.01.012.CrossRefPubMedGoogle Scholar
  23. 23.
    Mahajan, R., & Gupta, K. (2010). Food and drug administration’s critical path initiative and innovations in drug development paradigm: Challenges, progress, and controversies. Journal of Pharmacy & Bioallied Sciences, 2, 307–313.  https://doi.org/10.4103/0975-7406.72130.CrossRefGoogle Scholar
  24. 24.
    Wagner, J. A. (2008). Strategic approach to fit-for-purpose biomarkers in drug development. Annual Review of Pharmacology and Toxicology, 48, 631–651.  https://doi.org/10.1146/annurev.pharmtox.48.113006.094611.CrossRefPubMedGoogle Scholar
  25. 25.
    Grimwood, S., & Hartig, P. R. (2009). Target site occupancy: Emerging generalizations from clinical and preclinical studies. Pharmacology & Therapeutics, 122, 281–301.  https://doi.org/10.1016/j.pharmthera.2009.03.002.CrossRefGoogle Scholar
  26. 26.
    Krishna, R., Herman, G., & Wagner, J. A. (2008). Accelerating drug development using biomarkers: A case study with sitagliptin, a novel DPP4 inhibitor for type 2 diabetes. The AAPS Journal, 10, 401–409.  https://doi.org/10.1208/s12248-008-9041-8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Matthews, P. M., Rabiner, E. A., Passchier, J., & Gunn, R. N. (2012). Positron emission tomography molecular imaging for drug development. British Journal of Clinical Pharmacology, 73, 175–186.  https://doi.org/10.1111/j.1365-2125.2011.04085.x.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wong, D. F., Tauscher, J., & Gründer, G. (2009). The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology, 34, 187–203.  https://doi.org/10.1038/npp.2008.166.CrossRefPubMedGoogle Scholar
  29. 29.
    Simon, G. M., Niphakis, M. J., & Cravatt, B. F. (2013). Determining target engagement in living systems. Nature Chemical Biology, 9, 200–205.  https://doi.org/10.1038/nchembio.1211.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Szekely-Klepser, G., & Kindt, E. (2012). The role of biomarkers in drug discovery and development: Enabling PK/PD. In A. Lyubimov (Ed.), Encyclopedia of drug metabolism and interactions. Hoboken, NJ: John Wiley & Sons.Google Scholar
  31. 31.
    Marrer, E., & Dieterle, F. (2010). Impact of biomarker development on drug safety assessment. Toxicology and Applied Pharmacology, 243, 167–179.  https://doi.org/10.1016/j.taap.2009.12.015.CrossRefPubMedGoogle Scholar
  32. 32.
    Parker, C. E., & Borchers, C. H. (2014). Mass spectrometry based biomarker discovery, verification, and validation – Quality assurance and control of protein biomarker assays. Molecular Oncology, 8, 840–858.  https://doi.org/10.1016/j.molonc.2014.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Anderson, N. L., & Anderson, N. G. (2002). The human plasma proteome: History, character, and diagnostic prospects. Molecular & Cellular Proteomics, 1, 845–867.CrossRefGoogle Scholar
  34. 34.
    Fang, X., & Zhang, W.-W. (2008). Affinity separation and enrichment methods in proteomic analysis. Journal of Proteomics, 71, 284–303.  https://doi.org/10.1016/j.jprot.2008.06.011.CrossRefPubMedGoogle Scholar
  35. 35.
    Hakimi, A., Auluck, J., Jones, G. D. D., Ng, L. L., & Jones, D. J. L. (2014). Assessment of reproducibility in depletion and enrichment workflows for plasma proteomics using label-free quantitative data-independent LC-MS. Proteomics, 14, 4–13.  https://doi.org/10.1002/pmic.201200563.CrossRefPubMedGoogle Scholar
  36. 36.
    Motoyama, A., & Yates, J. R. (2008). Multidimensional LC separations in shotgun proteomics. Analytical Chemistry, 80, 7187–7193.  https://doi.org/10.1021/ac8013669.CrossRefPubMedGoogle Scholar
  37. 37.
    Batalha, I. L., Lowe, C. R., & Roque, A. C. A. (2012). Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends in Biotechnology, 30, 100–110.  https://doi.org/10.1016/j.tibtech.2011.07.004.CrossRefPubMedGoogle Scholar
  38. 38.
    Li, Q. (2010). Assigning significance in label-free quantitative proteomics to include single-peptide-hit proteins with low replicates. International Journal of Proteomics, 2010, pii: 731582.  https://doi.org/10.1155/2010/731582.CrossRefGoogle Scholar
  39. 39.
    Baldwin, M. A. (2004). Protein identification by mass spectrometry: Issues to be considered. Molecular & Cellular Proteomics, 3, 1–9.  https://doi.org/10.1074/mcp.R300012-MCP200.CrossRefGoogle Scholar
  40. 40.
    Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., Nesvizhskii, A., & Working Group on Publication Guidelines for Peptide and Protein Identification Data. (2004). The need for guidelines in publication of peptide and protein identification data. Molecular & Cellular Proteomics, 3, 531–533.  https://doi.org/10.1074/mcp.T400006-MCP200.CrossRefGoogle Scholar
  41. 41.
    Nesvizhskii, A. I., & Aebersold, R. (2004). Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. Drug Discovery Today, 9, 173–181.  https://doi.org/10.1016/S1359-6446(03)02978-7.CrossRefPubMedGoogle Scholar
  42. 42.
    Sadygov, R. G., Liu, H., & Yates, J. R. (2004). Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases. Analytical Chemistry, 76, 1664–1671.  https://doi.org/10.1021/ac035112y.CrossRefPubMedGoogle Scholar
  43. 43.
    States, D. J., Omenn, G. S., Blackwell, T. W., Fermin, D., Eng, J., Speicher, D. W., & Hanash, S. M. (2006). Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nature Biotechnology, 24, 333–338.  https://doi.org/10.1038/nbt1183.CrossRefPubMedGoogle Scholar
  44. 44.
    Wenger, C. D., & Coon, J. J. (2013). A proteomics search algorithm specifically designed for high-resolution tandem mass spectra. Journal of Proteome Research, 12, 1377–1386.  https://doi.org/10.1021/pr301024c.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dorfer, V., Pichler, P., Stranzl, T., Stadlmann, J., Taus, T., Winkler, S., & Mechtler, K. (2014). MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. Journal of Proteome Research, 13, 3679–3684.  https://doi.org/10.1021/pr500202e.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kim, S., & Pevzner, P. A. (2014). MS-GF+ makes progress towards a universal database search tool for proteomics. Nature Communications, 5, 5277.CrossRefGoogle Scholar
  47. 47.
    Gatlin, C. L., Kleemann, G. R., Hays, L. G., Link, A. J., & Yates, J. R. (1998). Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Analytical Biochemistry, 263, 93–101.  https://doi.org/10.1006/abio.1998.2809.CrossRefPubMedGoogle Scholar
  48. 48.
    Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev RA (2013) Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Mol Cell Proteomics 12(11):3330–8.CrossRefGoogle Scholar
  49. 49.
    Shishkova E, Hebert AS, Coon JJ (2016) Now, More Than Ever, Proteomics Needs Better Chromatography. Cell Syst. 26;3(4):321–324.CrossRefGoogle Scholar
  50. 50.
    Whitelegge, J. P. (2013). Integral membrane proteins and bilayer proteomics. Analytical Chemistry, 85, 2558–2568.  https://doi.org/10.1021/ac303064a.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Meng, F., Wiener, M. C., Sachs, J. R., Burns, C., Verma, P., Paweletz, C. P., Mazur, M. T., Deyanova, E. G., Yates, N. A., & Hendrickson, R. C. (2007). Quantitative analysis of complex peptide mixtures using FTMS and differential mass spectrometry. Journal of the American Society for Mass Spectrometry, 18, 226–233.  https://doi.org/10.1016/j.jasms.2006.09.014.CrossRefPubMedGoogle Scholar
  52. 52.
    Paweletz, C. P., Wiener, M. C., Bondarenko, A. Y., Yates, N. A., Song, Q., Liaw, A., Lee, A. Y. H., Hunt, B. T., Henle, E. S., Meng, F., Sleph, H. F., Holahan, M., Sankaranarayanan, S., Simon, A. J., Settlage, R. E., Sachs, J. R., Shearman, M., Sachs, A. B., Cook, J. J., & Hendrickson, R. C. (2010). Application of an end-to-end biomarker discovery platform to identify target engagement markers in cerebrospinal fluid by high resolution differential mass spectrometry. Journal of Proteome Research, 9, 1392–1401.  https://doi.org/10.1021/pr900925d.CrossRefPubMedGoogle Scholar
  53. 53.
    Villanueva, J., Philip, J., Entenberg, D., Chaparro, C. A., Tanwar, M. K., Holland, E. C., & Tempst, P. (2004). Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Analytical Chemistry, 76, 1560–1570.  https://doi.org/10.1021/ac0352171.CrossRefPubMedGoogle Scholar
  54. 54.
    Rabilloud, T. (2002). Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics, 2, 3–10.CrossRefGoogle Scholar
  55. 55.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., & Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 17, 994–999.  https://doi.org/10.1038/13690.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., & Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 1, 376–386.CrossRefGoogle Scholar
  57. 57.
    Ong, S.-E., Foster, L. J., & Mann, M. (2003). Mass spectrometric-based approaches in quantitative proteomics. Methods (San Diego California), 29, 124–130.CrossRefGoogle Scholar
  58. 58.
    Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., & Pappin, D. J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics, 3, 1154–1169.  https://doi.org/10.1074/mcp.M400129-MCP200.CrossRefGoogle Scholar
  59. 59.
    Staes, A., Demol, H., Van Damme, J., Martens, L., Vandekerckhove, J., & Gevaert, K. (2004). Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. Journal of Proteome Research, 3, 786–791.  https://doi.org/10.1021/pr049956p.CrossRefPubMedGoogle Scholar
  60. 60.
    Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K. A., & Hamon, C. (2003). Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry, 75, 1895–1904.CrossRefGoogle Scholar
  61. 61.
    Yao, X., Freas, A., Ramirez, J., Demirev, P. A., & Fenselau, C. (2001). Proteolytic 18O labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Analytical Chemistry, 73, 2836–2842.CrossRefGoogle Scholar
  62. 62.
    Kelstrup, C. D., Aizikov, K., Batth, T. S., Kreutzman, A., Grinfeld, D., Lange, O., Mourad, D., Makarov, A. A., & Olsen, J. V. (2018a). Limits for resolving isobaric tandem mass tag reporter ions using phase-constrained spectrum deconvolution. Journal of Proteome Research, 17(11), 4008–4016.  https://doi.org/10.1021/acs.jproteome.8b00381.CrossRefPubMedGoogle Scholar
  63. 63.
    Werner, T., Becher, I., Sweetman, G., Doce, C., Savitski, M. M., & Bantscheff, M. (2012). High-resolution enabled TMT 8-plexing. Analytical Chemistry, 84, 7188–7194.  https://doi.org/10.1021/ac301553x.CrossRefPubMedGoogle Scholar
  64. 64.
    Krijgsveld, J., Ketting, R. F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C. P., Plasterk, R. H. A., & Heck, A. J. R. (2003). Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nature Biotechnology, 21, 927–931.  https://doi.org/10.1038/nbt848.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wu, C. C., MacCoss, M. J., Howell, K. E., Matthews, D. E., & Yates, J. R. (2004). Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Analytical Chemistry, 76, 4951–4959.  https://doi.org/10.1021/ac049208j.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Snijders, A. P. L., de Vos, M. G. J., & Wright, P. C. (2005). Novel approach for peptide quantitation and sequencing based on 15 N and 13 C metabolic labeling. Journal of Proteome Research, 4, 578–585.  https://doi.org/10.1021/pr0497733.CrossRefPubMedGoogle Scholar
  67. 67.
    Zanivan, S., Krueger, M., & Mann, M. (2012). In vivo quantitative proteomics: The SILAC mouse. Methods in Molecular Biology (Clifton, NJ), 757, 435–450.  https://doi.org/10.1007/978-1-61779-166-6_25.CrossRefGoogle Scholar
  68. 68.
    Baughman, J. M., Rose, C. M., Kolumam, G., Webster, J. D., Wilkerson, E. M., Merrill, A. E., Rhoads, T. W., Noubade, R., Katavolos, P., Lesch, J., Stapleton, D. S., Rabaglia, M. E., Schueler, K. L., Asuncion, R., Domeyer, M., Zavala-Solorio, J., Reich, M., DeVoss, J., Keller, M. P., Attie, A. D., Hebert, A. S., Westphall, M. S., Coon, J. J., Kirkpatrick, D. S., & Dey, A. (2016). NeuCode proteomics reveals Bap1 regulation of metabolism. Cell Reports, 16, 583–595.  https://doi.org/10.1016/j.celrep.2016.05.096.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hebert, A. S., Merrill, A. E., Bailey, D. J., Still, A. J., Westphall, M. S., Strieter, E. R., Pagliarini, D. J., & Coon, J. J. (2013). Neutron-encoded mass signatures for multiplexed proteome quantification. Nature Methods, 10, 332.CrossRefGoogle Scholar
  70. 70.
    Elbert, D. L., Mawuenyega, K. G., Scott, E. A., Wildsmith, K. R., & Bateman, R. J. (2008). Stable isotope labeling tandem mass spectrometry (SILT): Integration with peptide identification and extension to data-dependent scans. Journal of Proteome Research, 7, 4546–4556.  https://doi.org/10.1021/pr800386u.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gustavsson, N., Greber, B., Kreitler, T., Himmelbauer, H., Lehrach, H., & Gobom, J. (2005). A proteomic method for the analysis of changes in protein concentrations in response to systemic perturbations using metabolic incorporation of stable isotopes and mass spectrometry. Proteomics, 5, 3563–3570.  https://doi.org/10.1002/pmic.200401193.CrossRefPubMedGoogle Scholar
  72. 72.
    Pratt, J. M., Petty, J., Riba-Garcia, I., Robertson, D. H. L., Gaskell, S. J., Oliver, S. G., & Beynon, R. J. (2002). Dynamics of protein turnover, a missing dimension in proteomics. Molecular & Cellular Proteomics, 1, 579–591.CrossRefGoogle Scholar
  73. 73.
    Blein-Nicolas, M., & Zivy, M. (2016). Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. Biochimica et Biophysica Acta, 1864, 883–895.  https://doi.org/10.1016/j.bbapap.2016.02.019.CrossRefPubMedGoogle Scholar
  74. 74.
    Nahnsen, S., Bielow, C., Reinert, K., & Kohlbacher, O. (2013). Tools for label-free peptide quantification. Molecular & Cellular Proteomics, 12, 549–556.  https://doi.org/10.1074/mcp.R112.025163.CrossRefGoogle Scholar
  75. 75.
    Gillette, M. A., Mani, D. R., & Carr, S. A. (2005). Place of pattern in proteomic biomarker discovery. Journal of Proteome Research, 4, 1143–1154.  https://doi.org/10.1021/pr0500962.CrossRefPubMedGoogle Scholar
  76. 76.
    Rappsilber, J., Ryder, U., Lamond, A. I., & Mann, M. (2002). Large-scale proteomic analysis of the human spliceosome. Genome Research, 12, 1231–1245.  https://doi.org/10.1101/gr.473902.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Liu, H., Sadygov, R. G., & Yates, J. R. (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical Chemistry, 76, 4193–4201.  https://doi.org/10.1021/ac0498563.CrossRefGoogle Scholar
  78. 78.
    Sun, A., Zhang, J., Wang, C., Yang, D., Wei, H., Zhu, Y., Jiang, Y., & He, F. (2009). Modified Spectral Count Index (mSCI) for estimation of protein abundance by protein relative identification possibility (RIPpro): A new proteomic technological parameter. Journal of Proteome Research, 8, 4934–4942.  https://doi.org/10.1021/pr900252n.CrossRefPubMedGoogle Scholar
  79. 79.
    Braisted, J. C., Kuntumalla, S., Vogel, C., Marcotte, E. M., Rodrigues, A. R., Wang, R., Huang, S.-T., Ferlanti, E. S., Saeed, A. I., Fleischmann, R. D., Peterson, S. N., & Pieper, R. (2008). The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics, 9, 529.  https://doi.org/10.1186/1471-2105-9-529.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ahrné, E., Molzahn, L., Glatter, T., & Schmidt, A. (2013). Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics, 13, 2567–2578.  https://doi.org/10.1002/pmic.201300135.CrossRefPubMedGoogle Scholar
  81. 81.
    Anjo, S. I., Santa, C., & Manadas, B. (2017). SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics, 17, 1600278.  https://doi.org/10.1002/pmic.201600278.CrossRefGoogle Scholar
  82. 82.
    Sajic, T., Liu, Y., & Aebersold, R. (2015). Using data-independent, high-resolution mass spectrometry in protein biomarker research: Perspectives and clinical applications. PROTEOMICS – Clinical Applications, 9, 307–321.  https://doi.org/10.1002/prca.201400117.CrossRefPubMedGoogle Scholar
  83. 83.
    Geiger, T., Cox, J., & Mann, M. (2010). Proteomics on an orbitrap benchtop mass spectrometer using all-ion fragmentation. Molecular & Cellular Proteomics, 9, 2252–2261.  https://doi.org/10.1074/mcp.M110.001537.CrossRefGoogle Scholar
  84. 84.
    Purvine, S., Eppel, J.-T., Yi, E. C., & Goodlett, D. R. (2003). Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics, 3, 847–850.  https://doi.org/10.1002/pmic.200300362.CrossRefPubMedGoogle Scholar
  85. 85.
    Ramos, A. A., Yang, H., Rosen, L. E., & Yao, X. (2006). Tandem parallel fragmentation of peptides for mass spectrometry. Analytical Chemistry, 78, 6391–6397.  https://doi.org/10.1021/ac060672t.CrossRefPubMedGoogle Scholar
  86. 86.
    Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G.-Z., McKenna, T., Nold, M. J., Richardson, K., Young, P., & Geromanos, S. (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Analytical Chemistry, 77, 2187–2200.  https://doi.org/10.1021/ac048455k.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bruderer, R., Bernhardt, O. M., Gandhi, T., Miladinović, S. M., Cheng, L.-Y., Messner, S., Ehrenberger, T., Zanotelli, V., Butscheid, Y., Escher, C., Vitek, O., Rinner, O., & Reiter, L. (2015). Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Molecular & Cellular Proteomics, 14, 1400–1410.  https://doi.org/10.1074/mcp.M114.044305.CrossRefGoogle Scholar
  88. 88.
    Gillet, L. C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R., & Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11, O111.016717.  https://doi.org/10.1074/mcp.O111.016717.CrossRefGoogle Scholar
  89. 89.
    Panchaud, A., Scherl, A., Shaffer, S. A., von Haller, P. D., Kulasekara, H. D., Miller, S. I., & Goodlett, D. R. (2009). Precursor acquisition independent from ion count: How to dive deeper into the proteomics ocean. Analytical Chemistry, 81, 6481–6488.  https://doi.org/10.1021/ac900888s.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A., & Yates, J. R., III. (2004). Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nature Methods, 1, 39.CrossRefGoogle Scholar
  91. 91.
    Weisbrod, C. R., Eng, J. K., Hoopmann, M. R., Baker, T., & Bruce, J. E. (2012a). Accurate peptide fragment mass analysis: Multiplexed peptide identification and quantification. Journal of Proteome Research, 11, 1621–1632.  https://doi.org/10.1021/pr2008175.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Egertson, J. D., Kuehn, A., Merrihew, G. E., Bateman, N. W., MacLean, B. X., Ting, Y. S., Canterbury, J. D., Marsh, D. M., Kellmann, M., Zabrouskov, V., Wu, C. C., & MacCoss, M. J. (2013). Multiplexed MS/MS for improved data-independent acquisition. Nature Methods, 10, 744–746.  https://doi.org/10.1038/nmeth.2528.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chen, B., Brown, K. A., Lin, Z., & Ge, Y. (2018). Top-down proteomics: Ready for prime time? Analytical Chemistry, 90, 110–127.  https://doi.org/10.1021/acs.analchem.7b04747.CrossRefPubMedGoogle Scholar
  94. 94.
    Fornelli, L., Toby, T. K., Schachner, L. F., Doubleday, P. F., Srzentić, K., DeHart, C. J., & Kelleher, N. L. (2018). Top-down proteomics: Where we are, where we are going? Journal of Proteomics, 175, 3–4.  https://doi.org/10.1016/j.jprot.2017.02.002.CrossRefPubMedGoogle Scholar
  95. 95.
    Kelleher, N. L. (2004). Top-down proteomics. Analytical Chemistry, 76, 197A–203A.CrossRefGoogle Scholar
  96. 96.
    Mazur, M. T., Cardasis, H. L., Spellman, D. S., Liaw, A., Yates, N. A., & Hendrickson, R. C. (2010). Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 107, 7728–7733.  https://doi.org/10.1073/pnas.0910776107.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Siuti, N., & Kelleher, N. L. (2007). Decoding protein modifications using top-down mass spectrometry. Nature Methods, 4, 817–821.  https://doi.org/10.1038/nmeth1097.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Calligaris, D., Villard, C., & Lafitte, D. (2011). Advances in top-down proteomics for disease biomarker discovery. Journal of Proteomics, 74, 920–934.  https://doi.org/10.1016/j.jprot.2011.03.030.CrossRefPubMedGoogle Scholar
  99. 99.
    Gregorich, Z. R., & Ge, Y. (2014). Top-down proteomics in health and disease: Challenges and opportunities. Proteomics, 14, 1195–1210.  https://doi.org/10.1002/pmic.201300432.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Savaryn, J. P., Catherman, A. D., Thomas, P. M., Abecassis, M. M., & Kelleher, N. L. (2013). The emergence of top-down proteomics in clinical research. Genome Medicine, 5, 53.  https://doi.org/10.1186/gm457.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Duffy, M. J., Sturgeon, C. M., Soletormos, G., Barak, V., Molina, R., Hayes, D. F., Diamandis, E. P., & Bossuyt, P. M. M. (2015). Validation of new cancer biomarkers: A position statement from the European group on tumor markers. Clinical Chemistry, 61, 809–820.  https://doi.org/10.1373/clinchem.2015.239863.CrossRefPubMedGoogle Scholar
  102. 102.
    Gutman, S., & Kessler, L. G. (2006). The US Food and Drug Administration perspective on cancer biomarker development. Nature Reviews. Cancer, 6, 565–571.  https://doi.org/10.1038/nrc1911.CrossRefPubMedGoogle Scholar
  103. 103.
    Qian, W.-J., Jacobs, J. M., Liu, T., Camp, D. G., & Smith, R. D. (2006). Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Molecular & Cellular Proteomics, 5, 1727–1744.  https://doi.org/10.1074/mcp.M600162-MCP200.CrossRefGoogle Scholar
  104. 104.
    Geyer, P. E., Holdt, L. M., Teupser, D., & Mann, M. (2017). Revisiting biomarker discovery by plasma proteomics. Molecular Systems Biology, 13, 942.  https://doi.org/10.15252/msb.20156297.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Desiderio, D. M., & Kai, M. (1983). Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomedical Mass Spectrometry, 10, 471–479.  https://doi.org/10.1002/bms.1200100806.CrossRefPubMedGoogle Scholar
  106. 106.
    Desiderio, D. M., Kai, M., Tanzer, F. S., Trimble, J., & Wakelyn, C. (1984). Measurement of enkephalin peptides in canine brain regions, teeth, and cerebrospinal fluid with high-performance liquid chromatography and mass spectrometry. Journal of Chromatography. A, 297, 245–260.  https://doi.org/10.1016/S0021-9673(01)89046-4.CrossRefGoogle Scholar
  107. 107.
    Barr, J. R., Maggio, V. L., Patterson, D. G., Cooper, G. R., Henderson, L. O., Turner, W. E., Smith, S. J., Hannon, W. H., Needham, L. L., & Sampson, E. J. (1996). Isotope dilution--mass spectrometric quantification of specific proteins: Model application with apolipoprotein A-I. Clinical Chemistry, 42, 1676–1682.PubMedGoogle Scholar
  108. 108.
    Jaffe, J. D., Keshishian, H., Chang, B., Addona, T. A., Gillette, M. A., & Carr, S. A. (2008). Accurate inclusion mass screening: A bridge from unbiased discovery to targeted assay development for biomarker verification. Molecular & Cellular Proteomics, 7, 1952–1962.  https://doi.org/10.1074/mcp.M800218-MCP200.CrossRefGoogle Scholar
  109. 109.
    Tiller, P. R., Cunniff, J., Land, A. P., Schwartz, J., Jardine, I., Wakefield, M., Lopez, L., Newton, J. F., Burton, R. D., Folk, B. M., Buhrman, D. L., Price, P., & Wu, D. (1997). Drug quantitation on a benchtop liquid chromatography-tandem mass spectrometry system. Journal of Chromatography. A, 771, 119–125.CrossRefGoogle Scholar
  110. 110.
    Wieboldt, R., Campbell, D. A., & Henion, J. (1998). Quantitative liquid chromatographic-tandem mass spectrometric determination of orlistat in plasma with a quadrupole ion trap. Journal of Chromatography B: Biomedical Sciences and Applications, 708, 121–129.CrossRefGoogle Scholar
  111. 111.
    Yost, R. A., Perchalski, R. J., Brotherton, H. O., Johnson, J. V., & Budd, M. B. (1984). Pharmaceutical and clinical analysis by tandem mass spectrometry. Talanta, 31, 929–935.  https://doi.org/10.1016/0039-9140(84)80223-4.CrossRefPubMedGoogle Scholar
  112. 112.
    Gallien, S., Duriez, E., Crone, C., Kellmann, M., Moehring, T., & Domon, B. (2012). Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Molecular & Cellular Proteomics, 11, 1709–1723.  https://doi.org/10.1074/mcp.O112.019802.CrossRefGoogle Scholar
  113. 113.
    Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S., & Coon, J. J. (2012). Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Molecular & Cellular Proteomics, 11, 1475–1488.  https://doi.org/10.1074/mcp.O112.020131.CrossRefGoogle Scholar
  114. 114.
    Schilling, B., MacLean, B., Held, J. M., Sahu, A. K., Rardin, M. J., Sorensen, D. J., Peters, T., Wolfe, A. J., Hunter, C. L., MacCoss, M. J., & Gibson, B. W. (2015). Multiplexed, scheduled, high-resolution parallel reaction monitoring on a full scan QqTOF instrument with integrated data-dependent and targeted mass spectrometric workflows. Analytical Chemistry, 87, 10222–10229.  https://doi.org/10.1021/acs.analchem.5b02983.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Gallien, S., Bourmaud, A., Kim, S. Y., & Domon, B. (2014). Technical considerations for large-scale parallel reaction monitoring analysis. Journal of Proteomics, 100, 147–159.  https://doi.org/10.1016/j.jprot.2013.10.029.CrossRefPubMedGoogle Scholar
  116. 116.
    Kelstrup, C. D., Bekker-Jensen, D. B., Arrey, T. N., Hogrebe, A., Harder, A., & Olsen, J. V. (2018b). Performance evaluation of the Q exactive HF-X for shotgun proteomics. Journal of Proteome Research, 17, 727–738.  https://doi.org/10.1021/acs.jproteome.7b00602.CrossRefPubMedGoogle Scholar
  117. 117.
    Anderson, N. L., Anderson, N. G., Haines, L. R., Hardie, D. B., Olafson, R. W., & Pearson, T. W. (2004). Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). Journal of Proteome Research, 3, 235–244.  https://doi.org/10.1021/pr034086h.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Dufield, D. R., & Radabaugh, M. R. (2012). Online immunoaffinity LC/MS/MS. A general method to increase sensitivity and specificity: How do you do it and what do you need? Methods, 56, 236–245.  https://doi.org/10.1016/j.ymeth.2011.08.012.CrossRefPubMedGoogle Scholar
  119. 119.
    Palandra, J., Finelli, A., Zhu, M., Masferrer, J., & Neubert, H. (2013). Highly specific and sensitive measurements of human and monkey interleukin 21 using sequential protein and tryptic peptide immunoaffinity LC-MS/MS. Analytical Chemistry, 85, 5522–5529.  https://doi.org/10.1021/ac4006765.CrossRefPubMedGoogle Scholar
  120. 120.
    Sucharski, F. K., Meier, S., Miess, C., Razavi, M., Pope, M., Yip, R., Anderson, N. L., Pearson, T. W., Warren, A. P., & Krantz, C. (2018). Development of an automated, interference-free, 2D-LC-MS/MS assay for quantification of a therapeutic mAb in human sera. Bioanalysis, 10, 1023–1037.  https://doi.org/10.4155/bio-2017-0252.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michelle R. Robinson
    • 1
  • Ronald A. Miller
    • 2
  • Daniel S. Spellman
    • 1
    Email author
  1. 1.Pharmacokinetics, Pharmacodynamics and Drug MetabolismMerck Research LaboratoriesWest PointUSA
  2. 2.Impact AnalyticalMidlandUSA

Personalised recommendations