Advertisement

Stoichiometry of Heavy Metal Binding to Peptides Involved in Alzheimer’s Disease: Mass Spectrometric Evidence

  • Monica Jureschi
  • Ancuta Veronica Lupaescu
  • Laura Ion
  • Brînduşa Alina Petre
  • Gabi DrochioiuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)

Abstract

Mass spectrometry is a powerful analytical technique becoming increasingly important in different biomedical research area. Mass spectrometric based methods were developed and applied to detect and identify multiple metal ion complexes of peptides and proteins with high sensitivity and high mass accuracy. Aggregation of amyloid-β (Aβ) peptides is one of the main pathological features of Alzheimer’s disease (AD), and some metal ions seem to play a key role in AD pathogenesis. Consequently, mass spectrometry was used to investigate heavy metal binding to AD-related peptides. Therefore, the purpose of this chapter is to review the methodology and application of identifying coordination chemistry and binding properties of several metal ion-binding sites to synthetic β-amyloid (Aβ) and anti-amyloid model peptides. The selective metal–amyloid-β peptide interaction studies using (a) Matrix-assisted laser desorption/ionization mass spectrometry (MALDI); (b) Electrospray ionization mass spectrometry (ESI-MS), and (c) Tandem mass spectrometry (MS/MSn) will be reported.

Keywords

Amyloid-β peptide Mass spectrometry Metal binding Neuroprotective peptide 

Abbreviations

AD

Alzheimer’s disease

ADNF

Activity-dependent neurotrophic factor

ADNP

Activity-dependent neurotrophic protein

AFM

Atomic force microscopy

APP

Amyloid precursor protein

Beta-amyloid peptide

CHCA

α-Cyano-4-hydroxycinnamic acid

CID

Collision-induced dissociation

DHB

Dihydroxybenzoic acid

ECD

Electron capture dissociation

ESI

Electrospray ionization

ETD

Electron transfer dissociation

EXAFS

Extended X-ray absorption fine structure spectroscopy

FTIR

Fourier-transform infrared spectroscopy

LC

Liquid chromatography

MALDI

Matrix-assisted laser desorption/ionization

MS

Mass spectrometry

MS/MS

Tandem mass spectrometry

NFTs

Neurofibrillary tangles

NMR

Nuclear magnetic resonance

ROS

Reactive oxygen species

SA

Sinapinic acid

SFM

Scanning force microscopy

THAP

Trihydroxyacetophenone,

TNFα

Tumor necrosis factor α

ToF

Time of flight

Notes

Acknowledgements

Funding from the Romanian Government (UEFISCDI Bucharest, PN-III-P4-ID-PCE-2016-0376, Contract 56/2017) is gratefully acknowledged by the authors.

References

  1. 1.
    Ong, S. E., & Mann, M. (2005). Mass spectrometry-based proteomics turns quantitative. Nature Chemical Biology, 1(5), 252–262.PubMedGoogle Scholar
  2. 2.
    Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207.Google Scholar
  3. 3.
    Pan, C., Xu, S., Zhou, H., Fu, Y., Ye, M., & Zou, H. (2007). Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Analytical and Bioanalytical Chemistry, 387(1), 193–204.PubMedGoogle Scholar
  4. 4.
    Mann, M., & Talbo, G. (1996). Developments in matrix-assisted laser desorption/ionization peptide mass spectrometry. Current Opinion in Biotechnology, 7(1), 11–19.PubMedGoogle Scholar
  5. 5.
    Salih, B., Masselon, C., & Zenobi, R. (1998). Matrix-assisted laser desorption/ionization mass spectrometry of noncovalent protein–transition metal ion complexes. Journal of Mass Spectrometry, 33(10), 994–1002.PubMedGoogle Scholar
  6. 6.
    Keith-Roach, M. J. (2010). A review of recent trends in electrospray ionisation–mass spectrometry for the analysis of metal–organic ligand complexes. Analytica Chimica Acta, 678(2), 140–148.PubMedGoogle Scholar
  7. 7.
    Carlton Jr., D. D., & Schug, K. A. (2011). A review on the interrogation of peptide–metal interactions using electrospray ionization-mass spectrometry. Analytica Chimica Acta, 686(1–2), 19–39.PubMedGoogle Scholar
  8. 8.
    Kepp, K. P. (2012). Bioinorganic chemistry of Alzheimer’s disease. Chemical Reviews, 112(10), 5193–5239.PubMedGoogle Scholar
  9. 9.
    Jellinger, K. A. (2010). Basic mechanisms of neurodegeneration: A critical update. Journal of Cellular and Molecular Medicine, 14, 457–487.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kepp, K. P. (2017). Alzheimer’s disease: How metal ions define β-amyloid function. Coordination Chemistry Reviews, 351(15), 127–159.Google Scholar
  11. 11.
    Iwatsubo, T., Saido, T. C., Mann, D. M., Lee, V. M., & Trojanowski, J. Q. (1996). Full-length amyloid-beta (1–42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. The American Journal of Pathology, 149(6), 1823–1830.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Akiyama, H. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383–421.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Heneka, M. T., Carson, M. J., Khoury, J. E., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14(4), 388–405.PubMedGoogle Scholar
  14. 14.
    Singhrao, S. K., Harding, A., Simmons, T., Robinson, S., Kesavalu, L., & Crean, S. (2014). Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer’s disease. Journal of Alzheimer’s Disease, 42(3), 723–737.PubMedGoogle Scholar
  15. 15.
    Calvano, C. D., Monopoli, A., Cataldi, T. R., & Palmisano, F. (2018). MALDI matrices for low molecular weight compounds: An endless story? Analytical and Bioanalytical Chemistry, 410, 4015–4038.PubMedGoogle Scholar
  16. 16.
    Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120(3), 885–890.PubMedGoogle Scholar
  17. 17.
    Wolfe, M. S. (2012). Processive proteolysis by γ-secretase and the mechanism of Alzheimer’s disease. Biological Chemistry, 393(9), 899–905.PubMedGoogle Scholar
  18. 18.
    Heneka, M. T., Golenbock, D. T., & Latz, E. (2015). Innate immunity in Alzheimer’s disease. Nature Immunology, 16(3), 229–236.PubMedGoogle Scholar
  19. 19.
    Selkoe, D. J. (2006). Toward a comprehensive theory for Alzheimer’s disease hypothesis: Alzheimer’s Disease Is Caused by the Cerebral Accumulation and Cytotoxicity of Amyloid β-Protein. Annals of the New York Academy of Sciences, 924(1), 17–25.Google Scholar
  20. 20.
    Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., et al. (2002). A structural model for Alzheimer’s – Amyloid fibrils based on experimental constraints from solid state NMR. Proceedings of the National Academy of Sciences of the United States of America, 99(26), 16742–16747.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature, 430(7000), 631–639.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Knowles, T. P. J., Vendruscolo, M., & Dobson, C. M. (2014). The amyloid state and its association with protein misfolding diseases. Nature Reviews. Molecular Cell Biology, 15(6), 384–396.PubMedGoogle Scholar
  23. 23.
    Pike, C., Burdick, D., Walencewicz, A., Glabe, C., & Cotman, C. (1993). Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. The Journal of Neuroscience, 13(4), 1676–1687.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Davis, J. B. (1996). Oxidative mechanisms in β-amyloid cytotoxicity. Neurodegeneration, 5, 441–444.PubMedGoogle Scholar
  25. 25.
    Kayed, R., & Lasagna-Reeves, C. A. (2013). Molecular mechanisms of amyloid oligomers toxicity. Journal of Alzheimer’s Disease, 33(1), S67–S78.PubMedGoogle Scholar
  26. 26.
    Smith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer’s disease amyloid-β peptide. Biochimica et Biophysica Acta-Biomembranes, 1768(8), 1976–1990.Google Scholar
  27. 27.
    Goodman, L. (1953). Alzheimer’s disease: A clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis. The Journal of Nervous and Mental Disease, 118, 97–130.PubMedGoogle Scholar
  28. 28.
    Lau, T. L., Gehman, J. D., Wade, J. D., Masters, C. L., Barnham, K. J., & Separovic, F. (2007). Clioquinol modulation of Aβ(1–42) interaction with phospholipid bilayers and metals. Biochimica et Biophysica Acta-Biomembranes, 1768, 3135–3144.Google Scholar
  29. 29.
    White, A. R., Barnham, K. J., Huang, X., Voltakis, I., Beyreuther, K., Masters, C. L., et al. (2004). Iron inhibits neurotoxicity induced by trace copper and biological reductants. Journal of Biological Inorganic Chemistry, 9, 269–280.PubMedGoogle Scholar
  30. 30.
    Adlard, P. A., & Bush, A. I. (2006). Metals and Alzheimer’s disease. Journal of Alzheimer's Disease, 10, 145–163.PubMedGoogle Scholar
  31. 31.
    Lahiri, D. K., Chen, D. M., Lahiri, P., Bondy, S., & Greig, N. H. (2005). Amyloid, cholinesterase, melatonin, and metals and their roles in aging and neurodegenerative diseases. Annals of the New York Academy of Sciences, 1056, 430–449.PubMedGoogle Scholar
  32. 32.
    Lee, J. Y., Cole, T. B., Palmiter, R. D., Suh, S. W., & Koh, J. Y. (2002). Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7705–7710.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. K., Bacarra, N. M. E., Romano, D. M., et al. (1998). Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. The Journal of Biological Chemistry, 273, 12817–12826.PubMedGoogle Scholar
  34. 34.
    Schlosser, G., Stefanescu, R., Przybylski, M., Murariu, M., Hudecz, F., & Drochioiu, G. (2007). Copper-induced oligomerization of peptides: A model study. European Journal of Mass Spectrometry, 13(5), 331–337.PubMedGoogle Scholar
  35. 35.
    Drago, D., Bettella, M., Bolognin, S., Cendron, L., Scancar, J., Milacic, R., et al. (2008). Potential pathogenic role of β-amyloid1–42–aluminum complex in Alzheimer’s disease. The International Journal of Biochemistry & Cell Biology, 40(4), 731–746.Google Scholar
  36. 36.
    Chen, Y. R., Huang, H. B., Chyan, C. L., Shiao, M. S., Lin, T. H., & Chen, Y. C. (2006). The effect of Aß conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy. Journal of Biochemistry, 139, 733–740.PubMedGoogle Scholar
  37. 37.
    Gaggelli, E., Grzonka, Z., Kozlowski, H., Migliorini, C., Molteni, E., Valensin, D., et al. (2008). Structural features of the Cu(II) complex with the rat Aβ(1–28) fragment. Chemical Communications, 3, 341–343.Google Scholar
  38. 38.
    Drochioiu, G., Manea, M., Dragusanu, M., Murariu, M., Dragan, E. S., Petre, B. A., et al. (2009). Interaction of β-amyloid(1–40) peptide with pairs of metal ions: An electrospray ion trap mass spectrometric model study. Biophysical Chemistry, 144(1–2), 9–20.PubMedGoogle Scholar
  39. 39.
    Drochioiu, G. (2009). An electrospray ionization mass spectrometric study of iron binding to amyloid-β peptides. European Journal of Mass Spectrometry, 15(5), 651–659.PubMedGoogle Scholar
  40. 40.
    Zirah, S., Stefanescu, R., Manea, M., Tian, X., Cecal, R., Kozin, S. A., et al. (2004). Zinc binding agonist effect on the recognition of the β-amyloid (4–10) epitope by anti-β-amyloid antibodies. Biochemical and Biophysical Research Communications, 321(2), 324–328.PubMedGoogle Scholar
  41. 41.
    Hare, D. J., Rembach, A., & Roberts, B. R. (2016). The emerging role of metalloproteomics in Alzheimer’s disease research. Systems Biology of Alzheimer’s Disease, 1303, 379–389.Google Scholar
  42. 42.
    Di Natale, G., Bellia, F., Sciacca, M. F., Campagna, T., & Pappalardo, G. (2018). Tau-peptide fragments and their copper (II) complexes: Effects on amyloid-β aggregation. Inorganica Chimica Acta, 472, 82–92.Google Scholar
  43. 43.
    Faller, P., & Hureau, C. (2009). Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Transactions, 7, 1080–1094.Google Scholar
  44. 44.
    Beit-Yannai, E., Kohen, R., Horowitz, M., Trembovler, V., & Shohami, E. (1997). Changes of biological reducing activity in rat brain following closed head injury: A cyclic voltammetry study in normal and heat-acclimated rats. Journal of Cerebral Blood Flow and Metabolism, 17(3), 273–279.PubMedGoogle Scholar
  45. 45.
    Huang, W. J., Zhang, X., & Chen, W. W. (2016). Role of oxidative stress in Alzheimer’s disease. Biomedical Reports, 4(5), 519–522.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Dikalov, S. I., Vitek, M. P., & Mason, R. P. (2004). Cupric–amyloid β peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radical Biology & Medicine, 36(3), 340–347.Google Scholar
  47. 47.
    Kozlowski, H., Luczkowski, M., Remelli, M., & Valensin, D. (2012). Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coordination Chemistry Reviews, 256(19–20), 2129–2141.Google Scholar
  48. 48.
    Kong, X., Zhao, Z., Lei, X., Zhang, B., Dai, D., & Jiang, L. (2015). Interaction of metal ions with the his13-his14 sequence relevant to Alzheimer’s disease. The Journal of Physical Chemistry. A, 119(14), 3528–3534.PubMedGoogle Scholar
  49. 49.
    Ryu, J., Girigoswami, K., Ha, C., Ku, S. H., & Park, C. B. (2008). Influence of multiple metal ions on β-amyloid aggregation and dissociation on a solid surface. The Biochemist, 47(19), 5328–5335.Google Scholar
  50. 50.
    Gozes, I. (2001). Neuroprotective peptide drug delivery and development: Potential new therapeutics. Trends in Neurosciences, 24(12), 700–705.PubMedGoogle Scholar
  51. 51.
    Barnham, K. J., & Bush, A. I. (2008). Metals in Alzheimer’s and Parkinson’s diseases. Current Opinion in Chemical Biology, 12(2), 222–228.PubMedGoogle Scholar
  52. 52.
    Gozes, I. (2011). NAP (davunetide) provides functional and structural neuroprotection. Current Pharmaceutical Design, 17(10), 1040–1044.PubMedGoogle Scholar
  53. 53.
    Gozes, I., Morimoto, B. H., Tiong, J., Fox, A., Sutherland, K., Dangoor, D., et al. (2006). NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Reviews, 11(4), 353–368.PubMedCentralGoogle Scholar
  54. 54.
    Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383–421.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ashur-Fabian, O., Segal-Ruder, Y., Skutelsky, E., Brenneman, D. E., Steingart, R. A., Giladi, E., et al. (2003). The neuroprotective peptide NAP inhibits the aggregation of the beta-amyloid peptide. Peptides, 24(9), 1413–1423.PubMedGoogle Scholar
  56. 56.
    Gozes, I., Sragovich, S., Schirer, Y., & Idan-Feldman, A. (2016). D-SAL and NAP: Two peptides sharing a SIP domain. Journal of Molecular Neuroscience, 59(2), 220–231.PubMedGoogle Scholar
  57. 57.
    Postu, P. A., Noumedem, J. A. K., Cioanca, O., Hancianu, M., Mihasan, M., Ciorpac, M., et al. (2017). Lactuca capensis reverses memory deficits in Aβ1-42-induced an animal model of Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 22(1), 111–122.PubMedCentralGoogle Scholar
  58. 58.
    Hancianu, M., Cioanca, O., Mihasan, M., & Hritcu, L. (2013). Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via anti-oxidative activities in rats. Phytomedicine, 20(5), 446–452.PubMedGoogle Scholar
  59. 59.
    Ford, M. J., Cantone, J. L., Polson, C., Toyn, J. H., Meredith, J. E., & Drexler, D. M. (2008). Qualitative and quantitative characterization of the amyloid β peptide (Aβ) population in biological matrices using an immunoprecipitation–LC/MS assay. Journal of Neuroscience Methods, 168(2), 465–474.PubMedGoogle Scholar
  60. 60.
    Grasso, G. (2010). The use of mass spectrometry to study amyloid-β peptides. Mass Spectrometry Reviews, 30(3), 347–365.PubMedGoogle Scholar
  61. 61.
    Zellner, M., Veitinger, M., & Umlauf, E. (2009). The role of proteomics in dementia and Alzheimer’s disease. Acta Neuropathologica, 118(1), 181–195.PubMedGoogle Scholar
  62. 62.
    Portelius, E., Bogdanovic, N., Gustavsson, M. K., Volkmann, I., Brinkmalm, G., Zetterberg, H., et al. (2010). Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathologica, 120(2), 185–193.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Zatta, P., Drago, D., Bolognin, S., & Sensi, S. L. (2009). Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends in Pharmacological Sciences, 30(7), 346–355.PubMedGoogle Scholar
  64. 64.
    Attanasio, F., Convertino, M., Magno, A., Caflisch, A., Corazza, A., Haridas, H., et al. (2013). Carnosine inhibits Aβ42 aggregation by perturbing the H-bond network in and around the central hydrophobic cluster. Chembiochem, 14(5), 583–592.PubMedGoogle Scholar
  65. 65.
    Hider, R. C., Ma, Y., Molina-Holgado, F., Gaeta, A., & Roy, S. (2008). Iron chelation as a potential therapy for neurodegenerative disease. Biochemical Society Transactions, 36(6), 1304–1308.PubMedGoogle Scholar
  66. 66.
    Roberds, S. L., Anderson, J., Basi, G., Bienkowski, M. J., Branstetter, D. G., Chen, K. S., et al. (2001). BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: Implications for Alzheimer’s disease therapeutics. Human Molecular Genetics, 10, 1317–1324.PubMedGoogle Scholar
  67. 67.
    Cuajungco, M. P., Frederickson, C. J., & Bush, A. I. (2005). Amyloid-beta metal interaction and metal chelation. Sub-Cellular Biochemistry, 38, 235–254.PubMedGoogle Scholar
  68. 68.
    Hegde, M. L., Bharathi, P., Suram, A., Venugopal, C., Jagannathan, R., Poddar, P., et al. (2009). Challenges associated with metal chelation therapy in Alzheimer’s disease. Journal of Alzheimer’s Disease, 17(3), 457–468.PubMedGoogle Scholar
  69. 69.
    Tahmasebinia, F., & Emadi, S. (2017). Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron. Biometals, 30(2), 285–293.PubMedGoogle Scholar
  70. 70.
    Choi, J. S., Braymer, J. J., Nanga, R. P., Ramamoorthy, A., & Lim, M. H. (2010). Design of small molecules that target metal-Abeta species and regulate metal-induced Abeta aggregation and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 107(51), 21990–21995.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., et al. (2003). Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Archives of Neurology, 60(12), 1685–1691.PubMedGoogle Scholar
  72. 72.
    Chang, S. Y., Zheng, N. Y., Chen, C. S., Chen, C. D., Chen, Y. Y., & Wang, C. C. (2007). Analysis of peptides and proteins affinity-bound to iron oxide nanoparticles by MALDI MS. Journal of the American Society for Mass Spectrometry, 18(5), 910–918.PubMedGoogle Scholar
  73. 73.
    Dashtiev, M., Wäfler, E., Röhlin, U., Gorshkov, M., Hillenkamp, F., & Zenobi, R. (2007). Positive and negative analyte ion yield in matrix-assisted laser desorption/ionization. International Journal of Mass Spectrometry, 268(2–3), 122–130.Google Scholar
  74. 74.
    Sandoval, W. (2014). Matrix-assisted laser desorption/ionization time-of-flight mass analysis of peptides. Current Protocols in Protein Science, 16(2), 1–16.2.11.Google Scholar
  75. 75.
    Fitzgerald, M. C., Parr, G. R., & Smith, L. M. (1993). Basic matrixes for the matrix-assisted laser desorption/ionization mass spectrometry of proteins and oligonucleotides. Analytical Chemistry, 65(22), 3204–3211.PubMedGoogle Scholar
  76. 76.
    Beavis, R. C., Chaudhary, T., & Chait, B. T. (1992). α-Cyano-4-hydroxycinnamic acid as a matrix for matrixassisted laser desorption mass spectromtry. Organic Mass Spectrometry, 27(2), 156–158.Google Scholar
  77. 77.
    Strupat, K., Karas, M., & Hillenkamp, F. (1991). 2,5-Dihydroxybenzoic acid: A new matrix for laser desorption—ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 111, 89–102.Google Scholar
  78. 78.
    Smolira, A., & Wessely-Szponder, J. (2014). Importance of the matrix and the matrix/sample ratio in MALDI-TOF-MS analysis of cathelicidins obtained from porcine neutrophils. Biotechnology and Applied Biochemistry, 175(4), 2050–2065.Google Scholar
  79. 79.
    Lin, Z., & Cai, Z. (2018). Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. Mass Spectrometry Reviews, 37(5), 681–696.PubMedGoogle Scholar
  80. 80.
    Stellato, F., Menestrina, G., Serra, M. D., Potrich, C., Tomazzolli, R., Meyer-Klaucke, W., et al. (2006). Metal binding in amyloid β-peptides shows intra- and inter-peptide coordination modes. European Biophysics Journal, 35(4), 340–351.PubMedGoogle Scholar
  81. 81.
    Miller, Y., Ma, B., & Nussinov, R. (2012). Metal binding sites in amyloid oligomers: Complexes and mechanisms. Coordination Chemistry Reviews, 256(19–20), 2245–2252.Google Scholar
  82. 82.
    Petre, B.-A., Youhnovski, N., Lukkari, J., Weber, R., & Przybylski, M. (2005). Structural characterisation of tyrosine-nitrated peptides by ultraviolet and infrared matrix-assisted laser desorption/ionisation fourier transform ion cyclotron resonance mass spectrometry. European Journal of Mass Spectrometry, 11(5), 513–518.PubMedGoogle Scholar
  83. 83.
    Loo, J. A. (2000). Electrospray ionization mass spectrometry: A technology for studying noncovalent macromolecular complexes. International Journal of Mass Spectrometry, 200(1–3), 175–186.Google Scholar
  84. 84.
    Mädler, S., Erba, E. B., & Zenobi, R. (2012). MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Applications of MALDI-TOF spectroscopy (pp. 1–36).Google Scholar
  85. 85.
    Glocker, M. O., Bauer, S. H. J., Kast, J., Volz, J., & Przybylski, M. (1996). Characterization of specific noncovalent protein complexes by UV matrix-assisted laser desorption ionization mass spectrometry. Journal of Mass Spectrometry, 31(11), 1221–1227.PubMedGoogle Scholar
  86. 86.
    Lehmann, E., Zenobi, R., & Vetter, S. (1999). Matrix-assisted laser desorption/ionization mass spectra reflect solution-phase zinc finger peptide complexation. Journal of the American Society for Mass Spectrometry, 10(1), 27–34.PubMedGoogle Scholar
  87. 87.
    Chen, X., Drogaris, P., & Bern, M. (2010). Identification of tandem mass spectra of mixtures of isomeric peptides. Journal of Proteome Research, 9(6), 3270–3279.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Ciobanu, C. I., Stefanescu, R., Niculaua, M., Teslaru, T., Gradinaru, R., & Drochioiu, G. (2016). Mass spectrometric evidence for iron binding to the neuroprotective peptide NAP and its Cys5 mutant. European Journal of Mass Spectrometry, 22(2), 97–104.PubMedGoogle Scholar
  89. 89.
    Lupaescu, A. V., Jureschi, M., Ciobanu, C. I., Ion, L., Zbancioc, G., Petre, B. A., et al. (2018). FTIR and MS evidence for heavy metal binding to anti-amyloidal NAP-like peptides. International Journal of Peptide Research and Therapeutics, 25, 303–309.Google Scholar
  90. 90.
    Di Marco, V. B., & Bombi, G. G. (2006). Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. Mass Spectrometry Reviews, 25(3), 347–379.PubMedGoogle Scholar
  91. 91.
    Ho, C. S., Lam, C. W. K., Chan, M. H. M., Cheung, R. C. K., Law, L. K., Lit, L. C. W., et al. (2003). Electrospray ionisation mass spectrometry: Principles and clinical applications. Clinical Biochemist Reviews, 24(1), 3–12.Google Scholar
  92. 92.
    Zirah, S., Rebuffat, S., Kozin, S. A., Debey, P., Fournier, F., Lesagec, D., et al. (2003). Zinc binding properties of the amyloid fragment Aβ(1–16) studied by electrospray-ionization mass spectrometry. International Journal of Mass Spectrometry, 228(2–3), 999–1016.Google Scholar
  93. 93.
    Murariu, M., Dragan, E. S., & Drochioiu, G. (2007). Synthesis and mass spectrometric characterization of a metal-affinity decapeptide: Copper-induced conformational changes. Biomacromolecules, 8(12), 3836–3841.PubMedGoogle Scholar
  94. 94.
    Loo, J. A. (1997). Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrometry Reviews, 16(1), 1–23.PubMedGoogle Scholar
  95. 95.
    McNaught, A. D., & McNaught, A. D. (1997). Compendium of chemical terminology (Vol. 1669, 2nd ed.). Oxford: Blackwell Science.Google Scholar
  96. 96.
    Roepstorff, P., & Fohlman, J. (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomedical Mass Spectrometry, 11(11), 601.PubMedGoogle Scholar
  97. 97.
    Wells, J. M., & McLuckey, S. A. (2005). Collision-induced dissociation (CID) of peptides and proteins. Methods in Enzymology, 402, 148–185.PubMedGoogle Scholar
  98. 98.
    Sleno, L., & Volmer, D. A. (2004). Ion activation methods for tandem mass spectrometry. Journal of Mass Spectrometry, 39(10), 1091–1112.PubMedGoogle Scholar
  99. 99.
    Cooper, H. J., Håkansson, K., & Marshall, A. G. (2005). The role of electron capture dissociation in biomolecular analysis. Mass Spectrometry Reviews, 24(2), 201–222.PubMedGoogle Scholar
  100. 100.
    Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., & Hunt, D. F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9528–9533.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Morgan, J. W., Hettick, J. M., & Russell, D. H. (2005). Peptide sequencing by MALDI 193-nm photodissociation TOF MS. Methods in Enzymology, 402, 186–209.PubMedGoogle Scholar
  102. 102.
    Budnik, B. A., Haselmann, K. F., & Zubarev, R. A. (2001). Electron detachment dissociation of peptide di-anions: An electron–hole recombination phenomenon. Chemical Physics Letters, 342(3–4), 299–302.Google Scholar
  103. 103.
    Coon, J. J., Shabanowitz, J., Hunt, D. F., & Syka, J. E. (2005). Electron transfer dissociation of peptide anions. Journal of the American Society for Mass Spectrometry, 16(6), 880–882.PubMedGoogle Scholar
  104. 104.
    Rebrin, I., Bregere, C., Gallaher, T. K., & Sohal, R. S. (2008). Detection and characterization of peroxynitrite-induced modifications of tyrosine, tryptophan, and methionine residues by tandem mass spectrometry. Methods in Enzymology, 441, 283–294.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Savitski, M. M., Lemeer, S., Boesche, M., Lang, M., Mathieson, T., Bantscheff, M., et al. (2010). Confident phosphorylation site localization using the Mascot Delta Score. Molecular & Cellular Proteomics, 10(2), M110.003830.Google Scholar
  106. 106.
    Glover, M. S., Dilger, J. M., Acton, M. D., Arnold, R. J., Radivojac, P., & Clemmer, D. E. (2016). Examining the influence of phosphorylation on peptide ion structure by ion mobility spectrometry-mass spectrometry. Journal of the American Society for Mass Spectrometry, 27(5), 786–794.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Lu, Y., Prudent, M., Qiao, L., Mendez Manuel, A., & Girault Hubert, H. (2010). Copper(I) and copper(II) binding to b-amyloid 16 (Ab16) studied by electrospray ionization mass spectrometry. Metallomics, 2(7), 474–479.PubMedGoogle Scholar
  108. 108.
    Prudent, M., & Girault, H. H. (2008). On-line electrogeneration of copper-peptide complexes in microspray mass spectrometry. Journal of the American Society for Mass Spectrometry, 19(4), 560–568.PubMedGoogle Scholar
  109. 109.
    Himes, R. A., Park, G. Y., Siluvai, G. S., Blackburn, N. J., & Karlin, K. D. (2008). Structural studies of copper(I) complexes of amyloid-β peptide fragments: Formation of two-coordinate bis(histidine) complexes. Angewandte Chemie International Edition In English, 47(47), 9084–9087.Google Scholar
  110. 110.
    Shearer, J., & Szalai, V. A. (2008). The amyloid-β peptide of Alzheimer’s disease binds cuiin a linear bis-his coordination environment: Insight into a possible neuroprotective mechanism for the amyloid-β peptide. Journal of the American Chemical Society, 130(52), 17826–17835.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Barnham, K. J., Kenche, V. B., Ciccotosto, G. D., Smith, D. P., Tew, D. J., Liu, X., et al. (2008). Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6813–6818.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Kumar, A., Moody, L., Olaivar, J. F., Lewis, N. A., Khade, R. L., Holder, A. A., et al. (2010). Inhibition of Aβ42 peptide aggregation by a binuclear ruthenium(II)−platinum(II) complex: Potential for multimetal organometallics as anti-amyloid agents. ACS Chemical Neuroscience, 1(10), 691–701.PubMedCentralGoogle Scholar
  113. 113.
    Wang, X., Wang, X., Zhang, C., Jiao, Y., & Guo, Z. (2012). Inhibitory action of macrocyclic platiniferous chelators on metal-induced Aβ aggregation. Chemical Science, 3(4), 1304.Google Scholar
  114. 114.
    Ma, G., Wang, E., Wei, H., Wei, K., Zhu, P., & Liu, Y. (2013). PtCl2(phen) disrupts the metal ions binding to amyloid-β peptide. Metallomics, 5(7), 879–887.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monica Jureschi
    • 1
  • Ancuta Veronica Lupaescu
    • 1
  • Laura Ion
    • 1
  • Brînduşa Alina Petre
    • 1
    • 2
  • Gabi Drochioiu
    • 1
    Email author
  1. 1.Faculty of ChemistryAlexandru Ioan Cuza University of IasiIaşiRomania
  2. 2.Center for Fundamental Research and Experimental Development in Translation Medicine – TRANSCENDRegional Institute of OncologyIaşiRomania

Personalised recommendations