The Potential for Ion Mobility in Pharmaceutical and Clinical Analyses

  • Kelly L. WormwoodEmail author
  • Liulin Deng
  • Ahmed M. Hamid
  • Daniel DeBord
  • Laura Maxon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


The pharmaceutical and clinical industries are imperative for the maintenance of global health and welfare and require accurate, reproducible, and high throughput analyses. Technological advancements, such as the development and implementation of liquid chromatography-tandem mass spectrometry (LC-MS), have allowed for improvements in these areas, however there is still room for development. One way in which current analyses may be improved is by the implementation of ion mobility technology. Ion mobility has the capability to produce much more comprehensive data sets, by providing separation of isomers, as well as improving throughput, with separations being performed as fast as 60 ms. Here we will discuss the potential for ion mobility to assist in the two specific areas of glycosylation monitoring of biological drugs, and vitamin D analysis, as representatives of ion mobility’s potential in both the pharmaceutical and clinical industries, respectively, as well as the current hurdles of ion mobility adoption in both fields.


SLIM (Structures for Lossless Ion Manipulations) Ion mobility Mass spectrometry Vitamin D Glycosylation Pharmaceutical Clinical 





Biological License Application


Collisional cross section


Clinical laboratory improvement amendments


Critical quality attribute


Drift tube ion mobility spectrometry


Formic acid


Field asymmetric ion mobility spectrometry


Food and Drug Administration


Hydrophilic interaction liquid chromatography


Ion mobility spectrometry


Liquid chromatography


Liquid chromatography-mass spectrometry


Mass spectrometry


Reverse phase


Structures for Lossless Ion Manipulations


Trapped ion mobility spectrometry


Time of flight


Traveling wave ion mobility spectrometry


  1. 1.
    Regenstein, M., & Andres, E. (2012). Results from the National Survey of Independent and Community Clinical Laboratories. Washington, DC: Department of Health Policy at the George Washington University School of Public Health and Health Services.Google Scholar
  2. 2.
    Lloyd, I., & Shimmings, A. (2017). Pharma r&d annual review 2017. London: Informa UK Ltd.Google Scholar
  3. 3.
    Pharmaceutical Research and Manufacturers of America (PhRMA). (2015). Pharmaceutical profile, 2015. Washington, DC: Pharmaceutical Research and Manufacturers of America (PhRMA).Google Scholar
  4. 4.
    Fournier, J. (2015). A review of glycan analysis requirements.Google Scholar
  5. 5.
    Food, U., & U.S. Department of Health and Human Services. (2012). Guidance for industry: Q11 development and manufacture of drug substances.Google Scholar
  6. 6.
    O’Flaherty, R., Trbojević-Akmačić, I., Greville, G., Rudd, P. M., & Lauc, G. (2018). The sweet spot for biologics: Recent advances in characterization of biotherapeutic glycoproteins. Expert Review of Proteomics, 15(1), 13–29.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Thobhani, S., Yuen, C.-T., Bailey, M. J., & Jones, C. J. G. (2008). Identification and quantification of N-linked oligosaccharides released from glycoproteins: an inter-laboratory study. Glycobiology, 19(3), 201–211.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Melmer, M., Stangler, T., Premstaller, A., & Lindner, W. (2011). Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. Journal of Chromatography. A, 1218(1), 118–123.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jensen, P. H., Mysling, S., Højrup, P., & Jensen, O. N. (2013). Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE). In Mass spectrometry of glycoproteins (pp. 131–144). New York, NY: Springer.CrossRefGoogle Scholar
  10. 10.
    Melmer, M., Stangler, T., Schiefermeier, M., Brunner, W., Toll, H., Rupprechter, A., et al. (2010). HILIC analysis of fluorescence-labeled N-glycans from recombinant biopharmaceuticals. Analytical and Bioanalytical Chemistry, 398(2), 905–914.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Shang, T. Q., Saati, A., Toler, K. N., Mo, J., Li, H., Matlosz, T., et al. (2014). Development and application of a robust N-glycan profiling method for heightened characterization of monoclonal antibodies and related glycoproteins. Journal of Pharmaceutical Sciences, 103(7), 1967–1978.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Zhang, Z., Pan, H., & Chen, X. (2009). Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrometry Reviews, 28(1), 147–176.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bongers, J., Devincentis, J., Fu, J., Huang, P., Kirkley, D. H., Leister, K., et al. (2011). Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography–mass spectrometry peptide mapping. Journal of Chromatography. A, 1218(45), 8140–8149.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Gong, B., Cukan, M., Fisher, R., Li, H., Stadheim, T. A., & Gerngross, T. (2009). Characterization of N-linked glycosylation on recombinant glycoproteins produced in Pichia pastoris using ESI-MS and MALDI-TOF. In Glycomics (pp. 213–223). New York, NY: Springer.CrossRefGoogle Scholar
  15. 15.
    Dotz, V., Haselberg, R., Shubhakar, A., Kozak, R. P., Falck, D., Rombouts, Y., et al. (2015). Mass spectrometry for glycosylation analysis of biopharmaceuticals. TrAC Trends in Analytical Chemistry, 73, 1–9.CrossRefGoogle Scholar
  16. 16.
    Little, M. J., Paquette, D. M., & Roos, P. K. J. E. (2006). Electrophoresis of pharmaceutical proteins: Status quo. Electrophoresis, 27(12), 2477–2485.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Staub, A., Guillarme, D., Schappler, J., Veuthey, J.-L., Rudaz, S., & analysis, b. (2011). Intact protein analysis in the biopharmaceutical field. Journal of Pharmaceutical and Biomedical Analysis, 55(4), 810–822.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lu, G., Crihfield, C. L., Gattu, S., Veltri, L. M., & Holland, L. A. (2018). Capillary electrophoresis separations of glycans. Chemical Reviews, 118(17), 7867–7885.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Szabo, Z., Guttman, A., Bones, J., & Karger, B. L. (2011). Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis. Analytical Chemistry, 83(13), 5329–5336.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhong, X., Chen, Z., Snovida, S., Liu, Y., Rogers, J. C., & Li, L. (2015). Capillary electrophoresis-electrospray ionization-mass spectrometry for quantitative analysis of glycans labeled with multiplex carbonyl-reactive tandem mass tags. Analytical Chemistry, 87(13), 6527–6534.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Landers, J. P. (1996). Handbook of capillary electrophoresis. Boca Raton, FL: CRC press.Google Scholar
  22. 22.
    Grossman, P. D., & Colburn, J. C. (2012). Capillary electrophoresis: Theory and practice. New York, NY: Academic Press.Google Scholar
  23. 23.
    Balaguer, E., & Neusüss, C. (2006). Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Analytical Chemistry, 78(15), 5384–5393.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jayo, R. G., Thaysen-Andersen, M., Lindenburg, P. W., Haselberg, R., Hankemeier, T., Ramautar, R., et al. (2014). Simple capillary electrophoresis–mass spectrometry method for complex glycan analysis using a flow-through microvial interface. Analytical Chemistry, 86(13), 6479–6486.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Matthew, A., Lauber, M. F. M., Brousmiche, D. W., & Koza, S. M. (2015). Robustness of RapiFluor-MS N-glycan sample preparations and glycan BEH amide HILIC chromatographic separations. In Water application notes: Glycans.Google Scholar
  26. 26.
    McCall, S. A., Lauber, M. A., Koza, S. M., & Chambers, E. E. Profiling released high mannose and complex N-glycan structures from monoclonal antibodies using optimized hydrophilic interaction chromatography.Google Scholar
  27. 27.
    Forrest, K. Y., & Stuhldreher, W. L. (2011). Prevalence and correlates of vitamin D deficiency in US adults. Nutrition Research, 31(1), 48–54.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Holick, M. F., & Chen, T. C. (2008). Vitamin D deficiency: A worldwide problem with health consequences. The American Journal of Clinical Nutrition, 87(4), 1080s–1086s.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Holick, M. F. (2007). Vitamin D deficiency. The New England Journal of Medicine, 357(3), 266–281.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Brot, C., Vestergaard, P., Kolthoff, N., Gram, J., Hermann, A. P., & Sørensen, O. H. (2001). Vitamin D status and its adequacy in healthy Danish perimenopausal women: Relationships to dietary intake, sun exposure and serum parathyroid hormone. The British Journal of Nutrition, 86(S1), S97–S103.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Holick, M. F. (2006). Resurrection of vitamin D deficiency and rickets. The Journal of Clinical Investigation, 116(8), 2062–2072.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chen, H., McCoy, L. F., Schleicher, R. L., & Pfeiffer, C. M. (2008). Measurement of 25-hydroxyvitamin D3 (25OHD3) and 25-hydroxyvitamin D2 (25OHD2) in human serum using liquid chromatography-tandem mass spectrometry and its comparison to a radioimmunoassay method. Clinica Chimica Acta, 391(1–2), 6–12.CrossRefGoogle Scholar
  33. 33.
    Holick, M., Matsuoka, L., & Wortsman, J. (1989). Age, vitamin D, and solar ultraviolet. Lancet, 334(8671), 1104–1105.CrossRefGoogle Scholar
  34. 34.
    Reid, I. R., Bolland, M. J., & Grey, A. (2014). Effects of vitamin D supplements on bone mineral density: A systematic review and meta-analysis. Lancet, 383(9912), 146–155.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tai, S. S.-C., Bedner, M., & Phinney, K. W. (2010). Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography− tandem mass spectrometry. Analytical Chemistry, 82(5), 1942–1948.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    America, L.C.o. (2018). Vitamin D, 25-hydroxy test, in test: 081950.Google Scholar
  37. 37.
    Diagnostics, Q. (2018). Vitamin D, 25-hydroxy, total, immunoassay.Google Scholar
  38. 38.
    Diagnostics, Q. (2018). Vitamin D deficiency and toxicity: Laboratory support of diagnosis and management. Available from:
  39. 39.
    Chindarkarova, B., & Kazak, M. (2010). Quantitative analysis of 25-OH-D2 and 25-OH-D3 in plasma using LC-MS/MS.Google Scholar
  40. 40.
    Jarvis, M., McClure, E., Leigh, D., Blake, D., & Koerner, P. (2012). Measurement of 25-OH-vitamin D3 and 3-Epi-25-OHVitamin D3 by LC/MS/MS.Google Scholar
  41. 41.
    Armenta, S., Alcala, M., & Blanco, M. (2011). A review of recent, unconventional applications of ion mobility spectrometry (IMS). Analytica Chimica Acta, 703(2), 114–123.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Eiceman, G. A. (2002). Ion-mobility spectrometry as a fast monitor of chemical composition. TrAC Trends in Analytical Chemistry, 21(4), 259–275.CrossRefGoogle Scholar
  43. 43.
    Márquez-Sillero, I., Aguilera-Herrador, E., Cárdenas, S., & Valcárcel, M. (2011). Ion-mobility spectrometry for environmental analysis. TrAC Trends in Analytical Chemistry, 30(5), 677–690.CrossRefGoogle Scholar
  44. 44.
    Ewing, R. G., Atkinson, D. A., Eiceman, G. A., & Ewing, G. J. (2001). A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta, 54(3), 515–529.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mäkinen, M., Nousiainen, M., & Sillanpää, M. (2011). Ion spectrometric detection technologies for ultra-traces of explosives: A review. Mass Spectrometry Reviews, 30(5), 940–973.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tam, M., & Hill, H. H. (2004). Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Analytical Chemistry, 76(10), 2741–2747.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kolakowski, B. M., & Mester, Z. (2007). Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst, 132(9), 842–864.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mäkinen, M. A., Anttalainen, O. A., & Sillanpää, M. E. (2010). Ion mobility spectrometry and its applications in detection of chemical warfare agents. ACS Publications.Google Scholar
  49. 49.
    Kaplan, K., & Hill Jr., H. (2011). Ion mobility spectrometry-mass spectrometry. Boca Raton, FL: CRC Press.Google Scholar
  50. 50.
    O’Donnell, R. M., Sun, X., & Harrington, P. B. (2008). Pharmaceutical applications of ion mobility spectrometry. TrAC Trends in Analytical Chemistry, 27(1), 44–53.CrossRefGoogle Scholar
  51. 51.
    Jurneczko, E., & Barran, P. E. J. A. (2011). How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst, 136(1), 20–28.CrossRefGoogle Scholar
  52. 52.
    McLean, J. A., Ruotolo, B. T., Gillig, K. J., & Russell, D. H. (2005). Ion mobility–mass spectrometry: a new paradigm for proteomics. International Journal of Mass Spectrometry, 240(3), 301–315.CrossRefGoogle Scholar
  53. 53.
    Uetrecht, C., Rose, R. J., van Duijn, E., Lorenzen, K., & Heck, A. J. (2010). Ion mobility mass spectrometry of proteins and protein assemblies. Chemical Society Reviews, 39(5), 1633–1655.PubMedCrossRefGoogle Scholar
  54. 54.
    Baker, E. S., Livesay, E. A., Orton, D. J., Moore, R. J., Danielson III, W. F., Prior, D. C., et al. (2010). An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. Journal of Proteome Research, 9(2), 997–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sowell, R. A., Koeniger, S. L., Valentine, S. J., Moon, M. H., & Clemmer, D. E. (2004). Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. Journal of the American Society for Mass Spectrometry, 15(9), 1341–1353.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Zheng, X., Wojcik, R., Zhang, X., Ibrahim, Y. M., Burnum-Johnson, K. E., Orton, D. J., et al. (2017). Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annual Review of Analytical Chemistry (Palo Alto, California), 10, 71–92.CrossRefGoogle Scholar
  57. 57.
    McAfee Jr., K. B., Sipler, D., & Edelson, D. (1967). Mobilities and reactions of ions in argon. Physical Review, 160(1), 130.CrossRefGoogle Scholar
  58. 58.
    Koeniger, S. L., Merenbloom, S. I., Valentine, S. J., Jarrold, M. F., Udseth, H. R., Smith, R. D., et al. (2006). An IMS− IMS Analogue of MS− MS. Analytical Chemistry, 78(12), 4161–4174.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wyttenbach, T., Kemper, P. R., & Bowers, M. T. (2001). Design of a new electrospray ion mobility mass spectrometer. International Journal of Mass Spectrometry, 212(1–3), 13–23.CrossRefGoogle Scholar
  60. 60.
    Borsdorf, H., Mayer, T., Zarejousheghani, M., & Eiceman, G. A. (2011). Recent developments in ion mobility spectrometry. Applied Spectroscopy Reviews, 46(6), 472–521.CrossRefGoogle Scholar
  61. 61.
    Kanu, A. B., Dwivedi, P., Tam, M., Matz, L., & Hill Jr., H. H. (2008). Ion mobility–mass spectrometry. Journal of Mass Spectrometry, 43(1), 1–22.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Asbury, G. R., & Hill, H. H. (2000). Using different drift gases to change separation factors (α) in ion mobility spectrometry. Analytical Chemistry, 72(3), 580–584.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Clemmer, D. E., & Jarrold, M. F. (1997). Ion mobility measurements and their applications to clusters and biomolecules. Journal of Mass Spectrometry, 32(6), 577–592.CrossRefGoogle Scholar
  64. 64.
    Howdle, M. D., Eckers, C., Laures, A. M.-F., & Creaser, C. S. (2010). The effect of drift gas on the separation of active pharmaceutical ingredients and impurities by ion mobility–mass spectrometry. Journal of Mass Spectrometry, 298(1–3), 72–77.CrossRefGoogle Scholar
  65. 65.
    McKnight, L., McAfee, K., & Sipler, D. J. (1967). Low-field drift velocities and reactions of nitrogen ions in nitrogen. Physics Review, 164(1), 62.CrossRefGoogle Scholar
  66. 66.
    von Helden, G., Wyttenbach, T., & Bowers, M. T. (1995). Inclusion of a MALDI ion source in the ion chromatography technique: Conformational information on polymer and biomolecular ions. International Journal of Mass Spectrometry and Ion Processes, 146, 349–364.CrossRefGoogle Scholar
  67. 67.
    Eiceman, G., & Stone, J. (2004). Peer reviewed: Ion mobility spectrometers in national defense. ACS Publications.Google Scholar
  68. 68.
    Stow, S. M., Causon, T. J., Zheng, X., Kurulugama, R. T., Mairinger, T., May, J. C., et al. (2017). An interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Analytical Chemistry, 89(17), 9048–9055.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    May, J. C., & McLean, J. A. (2015). Ion mobility-mass spectrometry: Time-dispersive instrumentation. Analytical Chemistry, 87(3), 1422–1436.CrossRefGoogle Scholar
  70. 70.
    Fernandez-Lima, F., Kaplan, D. A., Suetering, J., & Park, M. A. (2011). Gas-phase separation using a trapped ion mobility spectrometer. International Journal for Ion Mobility Spectrometry, 14(2–3), 93–98.CrossRefGoogle Scholar
  71. 71.
    Michelmann, K., Silveira, J. A., Ridgeway, M. E., & Park, M. A. (2015). Fundamentals of trapped ion mobility spectrometry. Journal of the American Society for Mass Spectrometry, 26(1), 14–24.CrossRefGoogle Scholar
  72. 72.
    Ridgeway, M. E., Lubeck, M., Jordens, J., Mann, M., & Park, M. A. (2018). Trapped ion mobility spectrometry: A short review. International Journal of Mass Spectrometry, 425, 22.CrossRefGoogle Scholar
  73. 73.
    Hernandez, D. R., DeBord, J. D., Ridgeway, M. E., Kaplan, D. A., Park, M. A., & Fernandez-Lima, F. (2014). Ion dynamics in a trapped ion mobility spectrometer. Analyst, 139(8), 1913–1921.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Silveira, J. A., Ridgeway, M. E., Laukien, F. H., Mann, M., & Park, M. A. (2017). Parallel accumulation for 100% duty cycle trapped ion mobility-mass spectrometry. International Journal of Mass Spectrometry, 413, 168–175.CrossRefGoogle Scholar
  75. 75.
    Silveira, J. A., Ridgeway, M. E., & Park, M. A. (2014). High resolution trapped ion mobility spectrometery of peptides. Analytical Chemistry, 86(12), 5624–5627.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Castellanos, A., Benigni, P., Hernandez, D., DeBord, J., Ridgeway, M., Park, M., et al. (2014). Fast screening of polycyclic aromatic hydrocarbons using trapped ion mobility spectrometry–mass spectrometry. Analytical Methods, 6(23), 9328–9332.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Dit Fouque, K. J., Moreno, J., Hegemann, J. D., Zirah, S., Rebuffat, S., & Fernandez-Lima, F. (2018). Identification of lasso peptide topologies using native nanoelectrospray ionization-trapped ion mobility spectrometry–mass spectrometry. Analytical Chemistry, 90(8), 5139–5146.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Liu, F. C., Kirk, S. R., & Bleiholder, C. (2016). On the structural denaturation of biological analytes in trapped ion mobility spectrometry–mass spectrometry. Analyst, 141(12), 3722–3730.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Pu, Y., Ridgeway, M. E., Glaskin, R. S., Park, M. A., Costello, C. E., & Lin, C. (2016). Separation and identification of isomeric glycans by selected accumulation-trapped ion mobility spectrometry-electron activated dissociation tandem mass spectrometry. Analytical Chemistry, 88(7), 3440–3443.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zietek, B. M., Mengerink, Y., Jordens, J., Somsen, G. W., Kool, J., & Honing, M. (2017). Adduct-ion formation in trapped ion mobility spectrometry as a potential tool for studying molecular structures and conformations. International Journal for Ion Mobility Spectrometry, 21, 1–14.Google Scholar
  81. 81.
    Guevremont, R. (2004). High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. Journal of Chromatography. A, 1058(1–2), 3–19.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Purves, R. W., & Guevremont, R. (1999). Electrospray ionization high-field asymmetric waveform ion mobility spectrometry− mass spectrometry. Analytical Chemistry, 71(13), 2346–2357.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Eiceman, G. A., Karpas, Z., & Hill Jr, H. H. (2013). Ion mobility spectrometry. Boca Raton, FL: CRC press.CrossRefGoogle Scholar
  84. 84.
    Buryakov, I., Krylov, E., Nazarov, E., & Rasulev, U. K. (1993). A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. International Journal of Mass Spectrometry and Ion Processes, 128(3), 143–148.CrossRefGoogle Scholar
  85. 85.
    Purves, R. W., Guevremont, R., Day, S., Pipich, C. W., & Matyjaszczyk, M. S. (1998). Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer. The Review of Scientific Instruments, 69(12), 4094–4105.CrossRefGoogle Scholar
  86. 86.
    Guevremont, R., Barnett, D. A., Purves, R. W., & Viehland, L. A. (2001). Calculation of ion mobilities from electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry. The Journal of Chemical Physics, 114(23), 10270–10277.CrossRefGoogle Scholar
  87. 87.
    Guevremont, R., Ding, L., Ells, B., Barnett, D. A., & Purves, R. W. (2001). Atmospheric pressure ion trapping in a tandem FAIMS-FAIMS coupled to a TOFMS: Studies with electrospray generated gramicidin S ions. Journal of the American Society for Mass Spectrometry, 12(12), 1320–1330.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Barnett, D. A., Ells, B., Guevremont, R., & Purves, R. W. (1999). Separation of leucine and isoleucine by electrospray ionization–high field asymmetric waveform ion mobility spectrometry–mass spectrometry. Journal of the American Society for Mass Spectrometry, 10(12), 1279–1284.CrossRefGoogle Scholar
  89. 89.
    Barnett, D. A., Purves, R. W., Ells, B., & Guevremont, R. (2000). Separation of o-, m-and p-phthalic acids by high-field asymmetric waveform ion mobility spectrometry (FAIMS) using mixed carrier gases. Journal of Mass Spectrometry, 35(8), 976–980.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Rorrer III, L., Prieto, M., & Yost, R. (2008). Evaluation of linear injection and orthogonal injection into Planr FAIMS-MS. In 56th ASMS Conference on Mass spectrometry and allied topics, Denver, CO. Chicago, IL: ASMS.Google Scholar
  91. 91.
    Giles, K., Pringle, S. D., Worthington, K. R., Little, D., Wildgoose, J. L., & Bateman, R. H. (2004). Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Communications in Mass Spectrometry, 18(20), 2401–2414.PubMedCrossRefGoogle Scholar
  92. 92.
    Giles, K., Wildgoose, J. L., Langridge, D. J., & Campuzano, I. (2010). A method for direct measurement of ion mobilities using a travelling wave ion guide. International Journal of Mass Spectrometry, 298(1–3), 10–16.CrossRefGoogle Scholar
  93. 93.
    Pringle, S. D., Giles, K., Wildgoose, J. L., Williams, J. P., Slade, S. E., Thalassinos, K., et al. (2007). An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. International Journal of Mass Spectrometry, 261(1), 1–12.CrossRefGoogle Scholar
  94. 94.
    Shvartsburg, A. A., & Smith, R. D. (2008). Fundamentals of traveling wave ion mobility spectrometry. Analytical Chemistry, 80(24), 9689–9699.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Giles, K., Wildgoose, J., Pringle, S., Garside, J., Carney, P., Nixon, P., et al. (2014). 62nd ASMS conference on mass Spectrometry and allied topics (pp. 15–19). Chicago, IL: ASMS.Google Scholar
  96. 96.
    Giles, K., Wildgoose, J., Pringle, S., Langridge, D., Nixon, P., Garside, J., et al. (2015). 63rd ASMS conference on mass spectrometry and allied topics. St. Louis, MO. Chicago, IL: ASMS.Google Scholar
  97. 97.
    Forsythe, J. G., Petrov, A. S., Walker, C. A., Allen, S. J., Pellissier, J. S., Bush, M. F., et al. (2015). Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst, 140(20), 6853–6861.CrossRefGoogle Scholar
  98. 98.
    Lietz, C. B., Yu, Q., & Li, L. (2014). Large-scale collision cross-section profiling on a traveling wave ion mobility mass spectrometer. Journal of the American Society for Mass Spectrometry, 25(12), 2009–2019.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ibrahim, Y. M., Hamid, A. M., Deng, L., Garimella, S. V., Webb, I. K., Baker, E. S., et al. (2017). New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst, 142(7), 1010–1021.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tolmachev, A. V., Webb, I. K., Ibrahim, Y. M., Garimella, S. V. B., Zhang, X., Anderson, G. A., et al. (2014). Characterization of ion dynamics in structures for lossless ion manipulations. Analytical Chemistry, 86(18), 9162–9168.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hamid, A. M., Ibrahim, Y. M., Garimella, S. V., Webb, I. K., Deng, L., Chen, T.-C., et al. (2015). Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations. Analytical Chemistry, 87(22), 11301–11308.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Webb, I. K., Garimella, S. V., Tolmachev, A. V., Chen, T.-C., Zhang, X., Norheim, R. V., et al. (2014). Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry. Analytical Chemistry, 86(18), 9169–9176.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Deng, L., Ibrahim, Y. M., Baker, E. S., Aly, N. A., Hamid, A. M., Zhang, X., et al. (2016). Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. ChemistrySelect, 1(10), 2396–2399.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Deng, L., Ibrahim, Y. M., Hamid, A. M., Garimella, S. V., Webb, I. K., Zheng, X., et al. (2016). Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Analytical Chemistry, 88(18), 8957–8964.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hamid, A. M., Garimella, S. V., Ibrahim, Y. M., Deng, L., Zheng, X., Webb, I. K., et al. (2016). Achieving high resolution ion mobility separations using traveling waves in compact multiturn structures for lossless ion manipulations. Analytical Chemistry, 88(18), 8949–8956.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Deng, L., Garimella, S. V. B., Hamid, A. M., Webb, I. K., Attah, I. K., Norheim, R. V., et al. (2017). Compression ratio ion mobility programming (CRIMP) accumulation and compression of billions of ions for ion mobility-mass Spectrometry using traveling waves in structures for lossless ion manipulations (SLIM). Analytical Chemistry, 89(12), 6432–6439.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Garimella, S. V. B., Hamid, A. M., Deng, L., Ibrahim, Y. M., Webb, I. K., Baker, E. S., et al. (2016). Squeezing of ion populations and peaks in traveling wave ion mobility separations and structures for lossless ion manipulations using compression ratio ion mobility programming. Analytical Chemistry, 88(23), 11877–11885.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chen, T.-C., Ibrahim, Y. M., Webb, I. K., Garimella, S. V. B., Zhang, X., Hamid, A. M., et al. (2016). Mobility-selected ion trapping and enrichment using structures for lossless ion manipulations. Analytical Chemistry, 88(3), 1728–1733.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chen, T.-C., Webb, I. K., Prost, S. A., Harrer, M. B., Norheim, R. V., Tang, K., et al. (2015). Rectangular ion funnel: A new ion funnel Interface for structures for lossless ion manipulations. Analytical Chemistry, 87(1), 716–722.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Deng, L., Ibrahim, Y. M., Garimella, S. V. B., Webb, I. K., Hamid, A. M., Norheim, R. V., et al. (2016). Greatly increasing trapped ion populations for mobility separations using traveling waves in structures for lossless ion manipulations. Analytical Chemistry, 88(20), 10143–10150.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Garimella, S. V. B., Ibrahim, Y. M., Webb, I. K., Ipsen, A. B., Chen, T.-C., Tolmachev, A. V., et al. (2015). Ion manipulations in structures for lossless ion manipulations (SLIM): Computational evaluation of a 90° turn and a switch. The Analyst, 140(20), 6845–6852.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Garimella, S. V. B., Webb, I. K., Prabhakaran, A., Attah, I. K., Ibrahim, Y. M., & Smith, R. D. (2017). Design of a TW-SLIM module for dual polarity confinement, transport, and reactions. Journal of the American Society for Mass Spectrometry, 28(7), 1442–1449.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Webb, I. K., Garimella, S. V. B., Norheim, R. V., Baker, E. S., Ibrahim, Y. M., & Smith, R. D. (2016). A structures for lossless ion manipulations (SLIM) module for collision induced dissociation. Journal of the American Society for Mass Spectrometry, 27(7), 1285–1288.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Li, H., Bendiak, B., Siems, W. F., Gang, D. R., & Jr, H. H. H. (2013). Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS) 2. Analytical Chemistry, 85(5), 2760–2769.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Harvey, D. J., Scarff, C. A., Edgeworth, M., Struwe, W. B., Pagel, K., Thalassinos, K., et al. (2016). Travelling-wave ion mobility and negative ion fragmentation of high-mannose N-glycans. Journal of Mass Spectrometry, 51(3), 219–235.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Damen, C. W., Chen, W., Chakraborty, A. B., van Oosterhout, M., Mazzeo, J. R., Gebler, J. C., et al. (2009). Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. Journal of the American Society for Mass Spectrometry, 20(11), 2021–2033.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Marcoux, J., Champion, T., Colas, O., Wagner-Rousset, E., Corvaïa, N., Van Dorsselaer, A., et al. (2015). Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Science, 24(8), 1210–1223.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pagel, K., & Harvey, D. J. (2013). Ion mobility–mass Spectrometry of complex carbohydrates: Collision cross sections of Sodiated N-linked Glycans. Analytical Chemistry, 85(10), 5138–5145.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Chouinard, C. D., Cruzeiro, V. W. D., Beekman, C. R., Roitberg, A. E., & Yost, R. A. (2017). Investigating differences in gas-phase conformations of 25-hydroxyvitamin D3 sodiated epimers using ion mobility-mass spectrometry and theoretical modeling. Journal of the American Society for Mass Spectrometry, 28(8), 1497–1505.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Bonislawski, A. (2018). Thermo Fisher gives FAIMS second try with new release.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kelly L. Wormwood
    • 1
    Email author
  • Liulin Deng
    • 1
  • Ahmed M. Hamid
    • 1
  • Daniel DeBord
    • 1
  • Laura Maxon
    • 1
  1. 1.MOBILion Systems Inc.ExtonUSA

Personalised recommendations