Mass Spectrometry- and Computational Structural Biology-Based Investigation of Proteins and Peptides

  • Marius Mihăşan
  • Kelly L. Wormwood
  • Izabela Sokolowska
  • Urmi Roy
  • Alisa G. Woods
  • Costel C. DarieEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Recent developments of mass spectrometry (MS) allow us to identify, estimate, and characterize proteins and protein complexes. At the same time, structural biology helps to determine the protein structure and its structure-function relationship. Together, they aid to understand the protein structure, property, function, protein-complex assembly, protein-protein interaction, and dynamics. The present chapter is organized with illustrative results to demonstrate how experimental mass spectrometry can be combined with computational structural biology for detailed studies of protein’s structures. We have used tumor differentiation factor protein/peptide as ligand and Hsp70/Hsp90 as receptor protein as examples to study ligand-protein interaction. To investigate possible protein conformation, we will describe two proteins—lysozyme and myoglobin. As an application of MS-based assignment of disulfide bridges, the case of the spider venom polypeptide Phα1β will also be discussed.


Structural biology Mass spectrometry Tumor differentiation factor Protein complex Protein-protein interactions Disulfide bridges assignment 



KLW was supported by the ASPIRE Graduate Student Fellowship through Clarkson University’s CUPO Office. MM was supported by the Fulbright Senior Postdoctoral Fellowship awarded by the Romania-USA Fulbright Commission to MM (guest) and CCD (host). MM and CCD are thankful to the newly established Erasmus+ exchange program between “Al. I. Cuza” University of Iasi, Romania and Clarkson University of Potsdam, NY, USA.


  1. 1.
    Forster, M. J. (2002). Molecular modelling in structural biology. Micron, 33(4), 365–384.PubMedGoogle Scholar
  2. 2.
    Murata, K., & Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta - General Subjects, 1862(2), 324–334.PubMedGoogle Scholar
  3. 3.
    Alber, F., Eswar, N., & Sali, A. (2004). Structure determination of macromolecular complexes by experiment and computation. In J. Bujnicki (Ed.), Practical bioinformatics (pp. 73–96). Berlin: Springer.Google Scholar
  4. 4.
    Judge, P. J., & Watts, A. (2011). Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Current Opinion in Chemical Biology, 15(5), 690–695.PubMedGoogle Scholar
  5. 5.
    Tang, L., & Johnson, J. E. (2002). Structural biology of viruses by the combination of electron cryomicroscopy and X-ray crystallography. Biochemistry, 41(39), 11517–11524.PubMedGoogle Scholar
  6. 6.
    Thonghin, N., Kargas, V., Clews, J., Ford, R. C. (2018). Cryo-electron microscopy of membrane proteins. Methods, 147, 176–186.PubMedGoogle Scholar
  7. 7.
    Sanchez, R., & Sali, A. (1997). Evaluation of comparative protein structure modeling by MODELLER-3. Proteins, Suppl 1, 50–58.PubMedGoogle Scholar
  8. 8.
    Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723.PubMedGoogle Scholar
  9. 9.
    Liu, H.-L., & Hsu, J.-P. (2005). Recent developments in structural proteomics for protein structure determination. Proteomics, 5(8), 2056–2068.PubMedGoogle Scholar
  10. 10.
    Simons, K. T., Strauss, C., & Baker, D. (2001). Prospects for ab initio protein structural genomics. Journal of Molecular Biology, 306(5), 1191–1199.PubMedGoogle Scholar
  11. 11.
    Bonneau, R., & Baker, D. (2001). Ab initio protein structure prediction: Progress and prospects. Annual Review of Biophysics and Biomolecular Structure, 30, 173–189.PubMedGoogle Scholar
  12. 12.
    Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294(5540), 93–96.PubMedGoogle Scholar
  13. 13.
    Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679–6685.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Raval, A., Piana S., Eastwood, M. P., Shaw, D. E. (2012). Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins, 80(8), 2071–2079.Google Scholar
  15. 15.
    Chen, J., & Brooks 3rd, C. L. (2007). Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins, 67(4), 922–930.PubMedGoogle Scholar
  16. 16.
    Šali, A., & Kuriyan, J. (1999). Challenges at the frontiers of structural biology. Trends in Cell Biology, 9(12), M20–M24.PubMedGoogle Scholar
  17. 17.
    Morin, A., & Sliz, P. (2013). Structural biology computing: Lessons for the biomedical research sciences. Biopolymers, 99(11), 809–816.PubMedGoogle Scholar
  18. 18.
    Moult, J., Fidelis, K., Kryshtafovych, A., Tramontano, A. (2011). Critical assessment of methods of protein structure prediction (CASP)—Round IX. Proteins: Structure, Function, and Bioinformatics, 79(S10), 1–5.Google Scholar
  19. 19.
    Wishart, D. S. (2005). Bioinformatics in drug development and assessment. Drug Metabolism Reviews, 37(2), 279–310.Google Scholar
  20. 20.
    Legrain, P., Aebersold, R., Archakov, A., Bairoch, A., Bala, K., Beretta, L., et al. (2011). The human proteome project: Current state and future direction. Molecular & Cellular Proteomics, 10(7), M111 009993.Google Scholar
  21. 21.
    Aebersold, R., Bader, G. D., Edwards, A. M., van Eyk, J. E., Kussmann, M., Qin, J., et al. (2012). The biology/disease-driven human proteome project (B/D-HPP): Enabling protein research for the life sciences community. Journal of Proteome Research, 12(1), 23–27.PubMedGoogle Scholar
  22. 22.
    Omenn, G. S., Lane, L., Lundberg, E. K., Overall, C. M., Deutsch, E. W. (2017). Progress on the HUPO draft human proteome: 2017 metrics of the human proteome project. Journal of Proteome Research, 16(12), 4281–4287.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Congreve, M., Murray, C. W., & Blundell, T. L. (2005). Keynote review: Structural biology and drug discovery. Drug Discovery Today, 10(13), 895–907.PubMedGoogle Scholar
  24. 24.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Darie C. C. (2013). Identification of post-translational modifications by mass spectrometry. Australian Journal of Chemistry, 66, 734–748.Google Scholar
  25. 25.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Deinhardt K., Darie, C. C. (2014). Protein-protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cellular and Molecular Life Sciences, 71, 205.Google Scholar
  26. 26.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Wormwood, K. L., Dao, S., Patel, S., et al. (2013). Automated mass spectrometry-based functional assay for the routine analysis of the secretome. Journal of Laboratory Automation, 18(1), 19–29.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., Darie C. C. (2012). Automatic determination of disulfide bridges in proteins. Journal of Laboratory Automation, 17(6), 408–416.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., Darie, C. C. (2013). Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cellular and Molecular Life Sciences, 70, 2835.Google Scholar
  29. 29.
    Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., Darie, C. C. (2012). Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. The FEBS Journal, 279(14), 2579–2594.PubMedGoogle Scholar
  30. 30.
    Sokolowska, I., Woods, A. G., Wagner, J., Dorier, J., Wormwood, K., Thome, J., et al. (2011). Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  31. 31.
    Woods, A. G., Sokolowska, I., Taurines, R., Gerlach, M., Dudley, E., Thome, J., Darie, C. C. (2012). Potential biomarkers in psychiatry: Focus on the cholesterol system. Journal of Cellular and Molecular Medicine, 16(6), 1184–1195.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Woods, A. G., Sokolowska, I., Yakubu, R., Butkiewicz, M., LaFleur, M., Talbot, C., et al. (2011). Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  33. 33.
    Karas, M., & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry, 60(20), 2299–2301.PubMedGoogle Scholar
  34. 34.
    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64–71.Google Scholar
  35. 35.
    Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., Darie, C. C. (2012). Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. The Journal of Biological Chemistry, 287(3), 1719–1733.PubMedGoogle Scholar
  36. 36.
    Dyachenko, A., Gruber, R., Shimon, L., Horovitz, A., Sharon, M. (2013). Allosteric mechanisms can be distinguished using structural mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 110(18), 7235–7239.Google Scholar
  37. 37.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Loo, J. A., Darie, C. C. (2013). Investigation of stable and transient protein–protein interactions: Past, present, and future. Proteomics, 13(3–4), 538–557.PubMedGoogle Scholar
  38. 38.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., Darie, C. C. (2013). Applications of mass spectrometry in proteomics. Australian Journal of Chemistry, 66(7), 721–733.Google Scholar
  39. 39.
    Darie, C. C. (2013). Mass spectrometry and its applications in life sciences. Australian Journal of Chemistry, 66(7), 719–720.Google Scholar
  40. 40.
    Florian, P. E., Macovei, A., Lazar, C., Milac, A. L., Sokolowska, I., Darie, C. C., et al. (2013). Characterization of the anti-HBV activity of HLP1-23, a human lactoferrin-derived peptide. Journal of Medical Virology, 85(5), 780–788.Google Scholar
  41. 41.
    Petrareanu, C., Macovei, A., Sokolowska, I., Woods, A. G., Lazar, C., Radu, G. L., et al. (2013). Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte-and biliary-like cells. PLoS One, 8(8), e71859.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Sokolowska, I., Dorobantu, C., Woods, A. G., Macovei, A., Branza-Nichita, N., Darie, C. C. (2012). Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Science, 10(1), 47.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Jurneczko, E., & Barran, P. E. (2011). How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst, 136(1), 20–28.Google Scholar
  44. 44.
    Benesch, J. L. P., & Ruotolo, B. T. (2011). Mass spectrometry: Come of age for structural and dynamical biology. Current Opinion in Structural Biology, 21(5), 641–649.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Walzthoeni, T., Leitner. A., Stengel, F., Aebersold, R. (2013). Mass spectrometry supported determination of protein complex structure. Current Opinion in Structural Biology, 23(2), 252–260.PubMedGoogle Scholar
  46. 46.
    Wintrode, P. (2013). Mass spectrometry in structural biology. Biochimica et Biophysica Acta, Proteins and Proteomics, 1834(6), 1187.Google Scholar
  47. 47.
    Dunham, W. H., Mullin, M., & Gingras, A. C. (2012). Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 12(10), 1576–1590.Google Scholar
  48. 48.
    Houde, D., Arndt, J., Domeier, W., Berkowitz, S., Engen, J. R. (2009). Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Analytical Chemistry, 81(7), 2644–2651.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Wilderman, P. R., Shah, M. B., Liu, T., Li, S., Hsu, S., Roberts, A. G. et al. (2010). Plasticity of cytochrome P450 2B4 as investigated by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography. The Journal of Biological Chemistry, 285(49), 38602–38611.PubMedGoogle Scholar
  50. 50.
    Shah, M. B., Jang, H. H., Wilderman, P. R., Lee, D., Li, S., Zhang, Q., et al. (2016). Effect of detergent binding on cytochrome P450 2B4 structure as analyzed by X-ray crystallography and deuterium-exchange mass spectrometry. Biophysical Chemistry, 216, 1–8.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Kaltashov, I. A., Bobst, C. E., & Abzalimov, R. R. (2009). H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: Is there a need for a top-down approach? Analytical Chemistry, 81(19), 7892–7899.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Konijnenberg, A., Butterer, A., & Sobott, F. (2013). Native ion mobility-mass spectrometry and related methods in structural biology. Biochimica et Biophysica Acta, 1834(6), 1239–1256.PubMedGoogle Scholar
  53. 53.
    Chalmers, M. J., Busby, S. A., Pascal, B. D., West, G. M., Griffin, P. R. (2011). Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Review of Proteomics, 8(1), 43–59.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kan, Z. Y., Walters, B. T., Mayne, L., Englander, S.W. (2013). Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proceedings of the National Academy of Sciences, 110, 16438.Google Scholar
  55. 55.
    Leitner, A., Joachimiak, L. A., Bracher, A., Mönkemeyer, L., Walzthoeni, T., Chen, B. et al. (2012). The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure, 20(5), 814–825.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kalisman, N., Adams, C. M., & Levitt, M. (2012). Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2884–2889.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kiosze-Becker, K., Kiosze-Becker, K., Ori, A., Gerovac, M., Heuer, A., Nürenberg-Goloub, E., Rashid, U. J. et al. (2016). Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nature Communications, 7, 13248.Google Scholar
  58. 58.
    Vos, S. M., Farnung, L., Urlaub, H., Cramer, P. (2018). Structure of paused transcription complex Pol II-DSIF-NELF. Nature, 560(7720), 601–606.Google Scholar
  59. 59.
    Barrera, N. P., Isaacson, S. C., Zhou, M., Bavro, V. N., Welch, A., Schaedler, T. A. et al. (2009). Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nature Methods, 6(8), 585–587.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Schey, K. L., Grey, A. C., & Nicklay, J. J. (2013). Mass spectrometry of membrane proteins: A focus on aquaporins. Biochemistry, 52(22), 3807–3817.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Laganowsky, A., Reading, E., Hopper, J. T. S., Robinson, C. V. et al. (2013). Mass spectrometry of intact membrane protein complexes. Nature Protocols, 8(4), 639–651.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Sundstrom, J. M., Tash, B. R., Murakami, T., Flanagan, J. M., Bewley, M. C., Stanley, B. A. et al. (2009). Identification and analysis of occludin phosphosites: A combined mass spectrometry and bioinformatics approach. Journal of Proteome Research, 8(2), 808–817.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Micalella, C., Martignon, S., Bruno, S., Pioselli, B., Caglio, R., Valetti, F. et al. (2011). X-ray crystallography, mass spectrometry and single crystal microspectrophotometry: A multidisciplinary characterization of catechol 1,2 dioxygenase. Biochimica et Biophysica Acta, 1814(6), 817–823.Google Scholar
  64. 64.
    Mikulecky, P., Zahradník, J., Kolenko, P., Černý, J., Charnavets, T., Kolářová, L. et al. (2016). Crystal structure of human interferon-gamma receptor 2 reveals the structural basis for receptor specificity. Acta Crystallographica. Section D, Structural Biology, 72(Pt 9), 1017–1025.Google Scholar
  65. 65.
    Carletti, E., Colletier, J. F., Schopfer, L. M., Santoni, G. L., Masson, P., Lockridge, O., et al. (2013). Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Chemical Research in Toxicology, 26(2), 280–289.PubMedGoogle Scholar
  66. 66.
    Lang, B. S., Gorren, A. C., Oberdorfer, G., Wenzl, M. V., Furdui, C. M., Poole, L. B. et al. (2012). Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: Reaction intermediates revealed by crystallography and mass spectrometry. The Journal of Biological Chemistry, 287(45), 38124–38134.PubMedGoogle Scholar
  67. 67.
    Chan, D. S., Mendes, V., Thomas, S. E., McConnell, B. N., Matak-Vinković, D., Coyne, A. G. et al. (2017). Fragment screening against the EthR-DNA interaction by native mass spectrometry. Angewandte Chemie (International Ed. in English), 56(26), 7488–7491.PubMedGoogle Scholar
  68. 68.
    Roy, U., Sokolowska, I., Woods, A. G., Darie, C. C. (2012). Structural investigation of tumor differentiation factor. Biotechnology and Applied Biochemistry, 59(6), 445–450.PubMedGoogle Scholar
  69. 69.
    Roy, U., Sokolowska, I., Woods, A. G., Darie, C. C. (2013). Tumor differentiation factor (TDF) and its receptor (TDF-R): Is TDF-R an inducible complex with multiple docking sites? Modern Chemistry & Applications, 1(3), 108.Google Scholar
  70. 70.
    Roy, U., Sokolowska, I., Woods, A. G., Darie, C. C. et al. (2013). Structural evaluation and analyses of tumor differentiation factor. The Protein Journal, 32(7), 512–518.PubMedGoogle Scholar
  71. 71.
    Woods, A. G.,Sokolowska, I., Deinhardt, K., Sandu, C., Darie, C. C. (2014). Identification of tumor differentiation factor (TDF) in select CNS neurons. Brain Structure & Function, 219, 1333.PubMedGoogle Scholar
  72. 72.
    Cheetham, J. C., Artymiuk, P. J., & Phillips, D. C. (1992). Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 A resolution. Journal of Molecular Biology, 224(3), 613–628.PubMedGoogle Scholar
  73. 73.
    Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33, W368–W371.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Myers, J., Grothaus, G., Narayanan, S., Onufriev, A. (2006). A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules. Proteins, 63, 928–938.Google Scholar
  75. 75.
    Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Research, 40(W1), W537–W541.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Guex, N., & Peitsch, M. C. (1996). Swiss-PdbViewer: A fast and easy-to-use PDB viewer for Macintosh and PC. Protein Data Bank Quaterly Newsletter, 77, 7.Google Scholar
  77. 77.
    Mehler, E. L., & Guarnieri, F. (1999). A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophysical Journal, 75, 3–22.Google Scholar
  78. 78.
    Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature, 181(4610), 662–666.PubMedGoogle Scholar
  79. 79.
    Yang, F., & Phillips Jr., G. N. (1996). Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. Journal of Molecular Biology, 256(4), 762–774.PubMedGoogle Scholar
  80. 80.
    Urayama, P., Phillips Jr., G. N., & Gruner, S. M. (2002). Probing substates in sperm whale myoglobin using high-pressure crystallography. Structure, 10(1), 51–60.PubMedGoogle Scholar
  81. 81.
    Sage, J. T., Morikis, D., Li, P., Champion, P. M. (1992). Low pH myoglobin photoproducts. Biophysical Journal, 61(4), 1041–1044.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Duprat, A. F., Traylor, T. G., Wu, G. Z., Coletta, M., Sharma, V. S., Walda, K. N. et al. (1995). Myoglobin-NO at low pH: Free four-coordinated heme in the protein pocket. Biochemistry, 34(8), 2634–2644.PubMedGoogle Scholar
  83. 83.
    Iben, I. E., Cowen, B. R., Sanches, R., Friedman, J. M. (1991). Carboxy Mb at pH 3. Time-resolved resonance Raman study at cryogenic temperatures. Biophysical Journal, 59(4), 908–919.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Han, S., Rousseau, D. L., Giacometti, G., Brunori, M. (1990). Metastable intermediates in myoglobin at low pH. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 205–209.Google Scholar
  85. 85.
    Cordeiro Mdo, N., de Figueiredo, S. G., Valentim Ado, C., Diniz, C. R., von Eickstedt, V. R., Gilroy, J. et al. (1993). Purification and amino acid sequences of six Tx3 type neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon, 31(1), 35–42.Google Scholar
  86. 86.
    Souza, A. H., Ferreira, J., Cordeiro Mdo, N., Vieira, L. B., De Castro, C. J., Trevisan, G. et al. (2008). Analgesic effect in rodents of native and recombinant Ph alpha 1beta toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. Pain, 140(1), 115–126.PubMedGoogle Scholar
  87. 87.
    Vieira, L. B., Kushmerick, C., Hildebrand, M. E., Garcia, E., Stea, A., Cordeiro, M. N. et al. (2005). Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. The Journal of Pharmacology and Experimental Therapeutics, 314(3), 1370–1377.PubMedGoogle Scholar
  88. 88.
    Rigo, F. K., Trevisan, G., Rosa, F., Dalmolin, G. D., Otuki, M. F., Cueto, A. P. et al. (2013). Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Science, 104(9), 1226–1230.PubMedGoogle Scholar
  89. 89.
    Yang, C. Y., Kim, T. W., Weng, S. A., Lee, B. R., Yang, M. L., Gotto, A. M. (1990). Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5523–5527.Google Scholar
  90. 90.
    Darie, C. C., Biniossek, M. L., Jovine, L., Litscher, E. S., Wassarman, P. M. (2004). Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry, 43(23), 7459–7478.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Wormwood, K. L., Ngounou Wetie, A. G., Gomez, M. V., Ju, Y., Kowalski, P., Mihasan, M., et al. (2018). Structural characterization and disulfide assignment of spider peptide phalpha1beta by mass spectrometry. Journal of the American Society for Mass Spectrometry, 29(5), 827–841.PubMedGoogle Scholar
  92. 92.
    Nadezhdin, K. D., Romanovskaia, D. D., Sachkova, M. Y., Oparin, P. B., Kovalchuk, S. I., Grishin, E. V. et al. (2017). Modular toxin from the lynx spider Oxyopes takobius: Structure of spiderine domains in solution and membrane-mimicking environment. Protein Science, 26(3), 611–616.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G, Gumienny, R., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Vyas, V. K., Ukawala, R. D., Ghate, M., Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein & Peptide Science, 7(3), 217–227.Google Scholar
  96. 96.
    Villegas, E., Adachi-Akahane, S., Bosmans, F., Tytgat, J., Nakajima, T., Corzo, G. (2008). Biochemical characterization of cysteine-rich peptides from Oxyopes sp. venom that block calcium ion channels. Toxicon, 52(2), 228–236.PubMedGoogle Scholar
  97. 97.
    Cheek, S., Krishna, S. S., & Grishin, N. V. (2006). Structural classification of small, disulfide-rich protein domains. Journal of Molecular Biology, 359(1), 215–237.PubMedGoogle Scholar
  98. 98.
    Kamikubo, Y., De Guzman, R., Kroon, G., Curriden, S., Neels, J. G., Churchill, M. J., et al. (2004). Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin. Biochemistry, 43(21), 6519–6534.PubMedGoogle Scholar
  99. 99.
    Zhou, A. (2007). Functional structure of the somatomedin B domain of vitronectin. Protein Science, 16(7), 1502–1508.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Rigo, F. K., Trevisan, G., De Prá, S. D., Cordeiro, M. N., Borges, M. H., Silva, J. F., et al. (2017). The spider toxin Phα1β recombinant possesses strong analgesic activity. Toxicon, 133, 145–152.PubMedGoogle Scholar
  101. 101.
    Boja, E. S., Hoodbhoy, T., Fales, H. M., Dean, J. (2003). Structural characterization of native mouse zona pellucida proteins using mass spectrometry. The Journal of Biological Chemistry, 278(36), 34189–34202.PubMedGoogle Scholar
  102. 102.
    Darie, C. C., Biniossek, M. L., Gawinowicz, M. A., Milgrom, Y., Thumfart, J. O., Jovine, L. et al. (2005). Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. The Journal of Biological Chemistry, 280(45), 37585–37598.PubMedGoogle Scholar
  103. 103.
    Han, L., Monné, M., Okumura, H., Schwend, T., Cherry, A. L., Flot, D., et al. (2010). Insights into egg coat assembly and egg-sperm interaction from the X-ray structure of full-length ZP3. Cell, 143(3), 404–415.PubMedGoogle Scholar
  104. 104.
    Jovine, L., Darie, C. C., Litscher, E. S., Wassarman, P. M. (2005). Zona pellucida domain proteins. Annual Review of Biochemistry, 74, 83–114.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Monne, M., Han, L., Schwend, T., Burendahl, S., Jovine, L. (2008). Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature, 456(7222), 653–657.PubMedGoogle Scholar
  106. 106.
    Zhao, M., Boja, E. S., Hoodbhoy, T., Nawrocki, J., Kaufman, J. B., Kresge, N. et al. (2004). Mass spectrometry analysis of recombinant human ZP3 expressed in glycosylation-deficient CHO cells. Biochemistry, 43(38), 12090–12104.PubMedGoogle Scholar
  107. 107.
    Kirshenbaum, N., Michaelevski, I., & Sharon, M. (2010). Analyzing large protein complexes by structural mass spectrometry. Journal of Visualized Experiments, (40).Google Scholar
  108. 108.
    Sharon, M. (2013). Structural MS pulls its weight. Science, 340(6136), 1059–1060.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marius Mihăşan
    • 1
    • 2
  • Kelly L. Wormwood
    • 1
  • Izabela Sokolowska
    • 1
  • Urmi Roy
    • 1
  • Alisa G. Woods
    • 1
  • Costel C. Darie
    • 1
    Email author
  1. 1.Biochemistry & Proteomics Group, Structural Biology & Molecular Modeling Unit, Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA
  2. 2.Department of BiologyAlexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations