Advertisement

Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry

  • Roshanak AslebaghEmail author
  • Kelly L. Wormwood
  • Devika Channaveerappa
  • Armand G. Ngounou Wetie
  • Alisa G. Woods
  • Costel C. DarieEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)

Abstract

There are only 30,000 human genes, which, according to the central dogma from biology, it means that there should be 30,000 mRNA and 30,000 proteins. However, there are at least 1-2 million protein entities that are expressed in a cell at a given time. This is primarily due to alternative splicing in different cells and tissues, which may lead to expression of different protein isoforms within one cell, but also different protein isoforms in different tissues. A new level of complexity of proteins and protein isoforms is then given by posttranslational modifications (PTMs) of proteins. Here, we discuss the PTMs in proteins and how they are identified by mass spectrometry and proteomics, with specific examples on identification of acetylation, phosphorylation, glycosylation, alkylation, hydroxinonenal-modification or assignment of intramolecular and intermolecular disulfide bridges.

Keywords

Posttranslational modifications Mass spectrometry Proteomics 

Notes

Acknowledgements

We would like to thank the past and current lab members for the friendly work environment.

References

  1. 1.
    Schmutz, J., Wheeler, J., Grimwood, J., Dickson, M., Yang, J., Caoile, C., et al. (2004). Quality assessment of the human genome sequence. Nature, 429(6990), 365–368.PubMedGoogle Scholar
  2. 2.
    Stein, L. (2001). Genome annotation: From sequence to biology. Nature Reviews. Genetics, 2(7), 493–503.PubMedGoogle Scholar
  3. 3.
    Eisenberg, D., Marcotte, E. M., Xenarios, I., & Yeates, T. O. (2000). Protein function in the post-genomic era. Nature, 405(6788), 823–826.PubMedGoogle Scholar
  4. 4.
    Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., et al. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131(6), 1190–1203.PubMedGoogle Scholar
  5. 5.
    Manning, G., Plowman, G. D., Hunter, T., & Sudarsanam, S. (2002). Evolution of protein kinase signaling from yeast to man. Trends in Biochemical Sciences, 27(10), 514–520.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.PubMedGoogle Scholar
  7. 7.
    Ohtsubo, K., & Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell, 126(5), 855–867.PubMedGoogle Scholar
  8. 8.
    Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., et al. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127(3), 635–648.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bischoff, R., & Schluter, H. (2012). Amino acids: Chemistry, functionality and selected non-enzymatic post-translational modifications. Journal of Proteomics, 75(8), 2275–2296.PubMedGoogle Scholar
  10. 10.
    Darie, C. (2013). Mass spectrometry and proteomics: Principle, workflow, challenges and perspectives. Modern Chemistry & Applications, 1(2), e105.Google Scholar
  11. 11.
    Darie, C. (2013). Post-translational modification (PTM) proteomics: Challenges and perspectives. Modern Chemistry & Applications, 1, e114.Google Scholar
  12. 12.
    Darie, C. C. (2013). Mass spectrometry and its application in life sciences. Australian Journal of Chemistry, 66, 1–2.Google Scholar
  13. 13.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., & Darie, C. C. (2013). Identification of post-translational modifications by mass spectrometry. Australian Journal of Chemistry, 66, 734–748.Google Scholar
  14. 14.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Wormwood, K. L., Dao, S., Patel, S., et al. (2013). Automated mass spectrometry-based functional assay for the routine analysis of the secretome. Journal of Laboratory Automation, 18(1), 19–29.PubMedGoogle Scholar
  15. 15.
    Ngounou Wetie, A. G., Sokolowska, I., Wormwood, K., Michel, T. M., Thome, J., Darie, C. C., et al. (2013). Mass spectrometry for the detection of potential psychiatric biomarkers. Journal of Molecular Psychiatry, 1, 8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sokolowska, I., Gawinowicz, M. A., Wetie, A. G., & Darie, C. C. (2012). Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis, 33(16), 2527–2536.PubMedGoogle Scholar
  17. 17.
    Sokolowska, I., Ngounou Wetie, A. G., Roy, U., Woods, A. G., & Darie, C. C. (2013). Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochimica et Biophysica Acta, 1834(8), 1474–1483.PubMedGoogle Scholar
  18. 18.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2013). Applications of mass spectrometry in proteomics. Australian Journal of Chemistry, 66, 721–733.Google Scholar
  19. 19.
    Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., & Darie, C. C. (2012). Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cellular and Molecular Life Sciences, 70, 2835.PubMedGoogle Scholar
  20. 20.
    Sokolowska, I., Woods, A. G., Wagner, J., Dorler, J., Wormwood, K., Thome, J., et al. (2011). Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  21. 21.
    Woods, A. G., Sokolowska, I., & Darie, C. C. (2012). Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Biochemical and Biophysical Research Communications, 419(2), 305–308.PubMedGoogle Scholar
  22. 22.
    Woods, A. G., Sokolowska, I., Taurines, R., Gerlach, M., Dudley, E., Thome, J., et al. (2012). Potential biomarkers in psychiatry: Focus on the cholesterol system. Journal of Cellular and Molecular Medicine, 16(6), 1184–1195.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Woods, A. G., Sokolowska, I., Yakubu, R., Butkiewicz, M., LaFleur, M., Talbot, C., et al. (2011). Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  24. 24.
    Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3.PubMedGoogle Scholar
  25. 25.
    Zhang, G., Spellman, D. S., Skolnik, E. Y., & Neubert, T. A. (2006). Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). Journal of Proteome Research, 5(3), 581–588.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Rinschen, M. M., Yu, M. J., Wang, G., Boja, E. S., Hoffert, J. D., Pisitkun, T., et al. (2010). Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3882–3887.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Cantin, G. T., Venable, J. D., Cociorva, D., & Yates 3rd, J. R. (2006). Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway. Journal of Proteome Research, 5(1), 127–134.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedGoogle Scholar
  29. 29.
    Pan, C., Kumar, C., Bohl, S., Klingmueller, U., & Mann, M. (2009). Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Molecular & Cellular Proteomics, 8(3), 443–450.Google Scholar
  30. 30.
    Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.PubMedGoogle Scholar
  31. 31.
    Malik, R., Dulla, K., Nigg, E. A., & Korner, R. (2010). From proteome lists to biological impact–tools and strategies for the analysis of large MS data sets. Proteomics, 10(6), 1270–1283.Google Scholar
  32. 32.
    Finkel, T. (2011). Signal transduction by reactive oxygen species. The Journal of Cell Biology, 194(1), 7–15.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hill, B. G., Dranka, B. P., Bailey, S. M., Lancaster Jr., J. R., & Darley-Usmar, V. M. (2010). What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. The Journal of Biological Chemistry, 285(26), 19699–19704.Google Scholar
  34. 34.
    Higdon, A., Diers, A. R., Oh, J. Y., Landar, A., & Darley-Usmar, V. M. (2012). Cell signalling by reactive lipid species: New concepts and molecular mechanisms. The Biochemical Journal, 442(3), 453–464.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1), 315–424.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Apweiler, R., Hermjakob, H., & Sharon, N. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica et Biophysica Acta, 1473(1), 4–8.PubMedGoogle Scholar
  37. 37.
    Kornfeld, R., & Kornfeld, S. (1985). Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry, 54, 631–664.PubMedGoogle Scholar
  38. 38.
    Stanley, P. (2011). Golgi glycosylation. Cold Spring Harbor Perspectives in Biology, 3(4), a005199.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Halim, A., Brinkmalm, G., Ruetschi, U., Westman-Brinkmalm, A., Portelius, E., Zetterberg, H., et al. (2011). Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 11848–11853.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Steentoft, C., Vakhrushev, S. Y., Vester-Christensen, M. B., Schjoldager, K. T., Kong, Y., Bennett, E. P., et al. (2011). Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nature Methods, 8(11), 977–982.PubMedGoogle Scholar
  41. 41.
    Spiro, R. G. (1969). Characterization and quantitative determination of the hydroxylysine-linked carbohydrate units of several collagens. The Journal of Biological Chemistry, 244(4), 602–612.PubMedGoogle Scholar
  42. 42.
    Spiro, R. G. (2002). Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43R–56R.PubMedGoogle Scholar
  43. 43.
    Reis, C. A., Osorio, H., Silva, L., Gomes, C., & David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. Journal of Clinical Pathology, 63(4), 322–329.PubMedGoogle Scholar
  44. 44.
    Aggarwal, S. (2010). What’s fueling the biotech engine-2009-2010. Nature Biotechnology, 28(11), 1165–1171.PubMedGoogle Scholar
  45. 45.
    Hunt, J. V., Dean, R. T., & Wolff, S. P. (1988). Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. The Biochemical Journal, 256(1), 205–212.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Smith, M. A., Richey, P. L., Taneda, S., Kutty, R. K., Sayre, L. M., Monnier, V. M., et al. (1994). Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Annals of the New York Academy of Sciences, 738, 447–454.Google Scholar
  47. 47.
    Elsholz, A. K., Turgay, K., Michalik, S., Hessling, B., Gronau, K., Oertel, D., et al. (2012). Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7451–7456.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Laub, M. T., & Goulian, M. (2007). Specificity in two-component signal transduction pathways. Annual Review of Genetics, 41, 121–145.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Barford, D. (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends in Biochemical Sciences, 21(11), 407–412.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang, Z. Y. (2002). Protein tyrosine phosphatases: Structure and function, substrate specificity, and inhibitor development. Annual Review of Pharmacology and Toxicology, 42, 209–234.PubMedGoogle Scholar
  51. 51.
    Johnson, L. N., & Barford, D. (1993). The effects of phosphorylation on the structure and function of proteins. Annual Review of Biophysics and Biomolecular Structure, 22, 199–232.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hunter, T. (2007). The age of crosstalk: Phosphorylation, ubiquitination, and beyond. Molecular Cell, 28(5), 730–738.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Braconi Quintaje, S., & Orchard, S. (2008). The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: One small step in manual annotation, one giant leap for full comprehension of genomes. Molecular & Cellular Proteomics, 7(8), 1409–1419.Google Scholar
  54. 54.
    Jackson, M. D., & Denu, J. M. (2001). Molecular reactions of protein phosphatases–insights from structure and chemistry. Chemical Reviews, 101(8), 2313–2340.Google Scholar
  55. 55.
    Guan, K. L., & Dixon, J. E. (1991). Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. The Journal of Biological Chemistry, 266(26), 17026–17030.Google Scholar
  56. 56.
    Paik, W. K., Paik, D. C., & Kim, S. (2007). Historical review: The field of protein methylation. Trends in Biochemical Sciences, 32(3), 146–152.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ishikawa, Y., & Melville, D. B. (1970). The enzymatic alpha-N-methylation of histidine. The Journal of Biological Chemistry, 245(22), 5967–5973.PubMedGoogle Scholar
  58. 58.
    Bedford, M. T., & Clarke, S. G. (2009). Protein arginine methylation in mammals: Who, what, and why. Molecular Cell, 33(1), 1–13.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang, C., Leffler, S., Thompson, D. H., & Hrycyna, C. A. (2005). A general fluorescence-based coupled assay for S-adenosylmethionine-dependent methyltransferases. Biochemical and Biophysical Research Communications, 331(1), 351–356.PubMedGoogle Scholar
  60. 60.
    Erce, M. A., Pang, C. N., Hart-Smith, G., & Wilkins, M. R. (2012). The methylproteome and the intracellular methylation network. Proteomics, 12(4–5), 564–586.PubMedGoogle Scholar
  61. 61.
    Darwanto, A., Curtis, M. P., Schrag, M., Kirsch, W., Liu, P., Xu, G., et al. (2010). A modified “cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. The Journal of Biological Chemistry, 285(28), 21868–21876.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Haglund, K., & Dikic, I. (2005). Ubiquitylation and cell signaling. The EMBO Journal, 24(19), 3353–3359.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: Structures, functions, mechanisms. Biochimica et Biophysica Acta, 1695(1–3), 55–72.PubMedGoogle Scholar
  64. 64.
    Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.PubMedGoogle Scholar
  65. 65.
    Bhoj, V. G., & Chen, Z. J. (2009). Ubiquitylation in innate and adaptive immunity. Nature, 458(7237), 430–437.PubMedGoogle Scholar
  66. 66.
    Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298(5600), 1912–1934.PubMedGoogle Scholar
  67. 67.
    Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.PubMedGoogle Scholar
  68. 68.
    Shi, Y. (2009). Serine/threonine phosphatases: Mechanism through structure. Cell, 139(3), 468–484.PubMedGoogle Scholar
  69. 69.
    Danielsen, J. M., Sylvestersen, K. B., Bekker-Jensen, S., Szklarczyk, D., Poulsen, J. W., Horn, H., et al. (2011). Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Molecular & Cellular Proteomics, 10(3), M110 003590.Google Scholar
  70. 70.
    Jin, L., Pahuja, K. B., Wickliffe, K. E., Gorur, A., Baumgartel, C., Schekman, R., et al. (2012). Ubiquitin-dependent regulation of COPII coat size and function. Nature, 482(7386), 495–500.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.PubMedGoogle Scholar
  72. 72.
    Motegi, A., Liaw, H. J., Lee, K. Y., Roest, H. P., Maas, A., Wu, X., et al. (2008). Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12411–12416.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science, 327(5968), 1000–1004.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R., & Thompson, C. B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 324(5930), 1076–1080.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Ganesan, A., Nolan, L., Crabb, S. J., & Packham, G. (2009). Epigenetic therapy: Histone acetylation, DNA methylation and anti-cancer drug discovery. Current Cancer Drug Targets, 9(8), 963–981.PubMedGoogle Scholar
  76. 76.
    Li, G., & Reinberg, D. (2011). Chromatin higher-order structures and gene regulation. Current Opinion in Genetics & Development, 21(2), 175–186.Google Scholar
  77. 77.
    Khan, S. N., & Khan, A. U. (2010). Role of histone acetylation in cell physiology and diseases: An update. Clinica Chimica Acta, 411(19–20), 1401–1411.Google Scholar
  78. 78.
    Sato, N., Maitra, A., Fukushima, N., van Heek, N. T., Matsubayashi, H., Iacobuzio-Donahue, C. A., et al. (2003). Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 63(14), 4158–4166.PubMedGoogle Scholar
  79. 79.
    Balasubramanyam, K., Varier, R. A., Altaf, M., Swaminathan, V., Siddappa, N. B., Ranga, U., et al. (2004). Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. The Journal of Biological Chemistry, 279(49), 51163–51171.PubMedGoogle Scholar
  80. 80.
    Aggarwal, S., Ichikawa, H., Takada, Y., Sandur, S. K., Shishodia, S., & Aggarwal, B. B. (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Molecular Pharmacology, 69(1), 195–206.PubMedGoogle Scholar
  81. 81.
    Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840.Google Scholar
  82. 82.
    Plazas-Mayorca, M. D., Bloom, J. S., Zeissler, U., Leroy, G., Young, N. L., DiMaggio, P. A., et al. (2010). Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown. Molecular BioSystems, 6(9), 1719–1729.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Sokolowska, I., Dorobantu, C., Woods, A. G., Macovei, A., Branza-Nichita, N., & Darie, C. C. (2012). Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Science, 10(1), 47.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Sokolowska, I., Ngounou Wetie, A. G., Wormwood, K., Michel, T. M., Thome, J., Darie, C. C., et al. (2015). The potential of biomarkers in psychiatry. Journal of Neural Transmission, 122(1), 9–18.Google Scholar
  85. 85.
    Woods, A. G., Ngounou Wetie, A. G., Sokolowska, I., Russell, S., Ryan, J. P., Michel, T. M., et al. (2013). Mass spectrometry as a tool for studying autism spectrum disorder. Journal of Molecular Psychiatry, 1, 6.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Garcia, B. A. (2010). What does the future hold for top down mass spectrometry? Journal of the American Society for Mass Spectrometry, 21(2), 193–202.PubMedGoogle Scholar
  87. 87.
    Cannon, J., Lohnes, K., Wynne, C., Wang, Y., Edwards, N., & Fenselau, C. (2010). High-throughput middle-down analysis using an orbitrap. Journal of Proteome Research, 9(8), 3886–3890.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Picotti, P., & Aebersold, R. (2012). Selected reaction monitoring-based proteomics: Workflows, potential, pitfalls and future directions. Nature Methods, 9(6), 555–566.PubMedGoogle Scholar
  89. 89.
    Lehmann, W. D., Kruger, R., Salek, M., Hung, C. W., Wolschin, F., & Weckwerth, W. (2007). Neutral loss-based phosphopeptide recognition: A collection of caveats. Journal of Proteome Research, 6(7), 2866–2873.PubMedGoogle Scholar
  90. 90.
    Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., & Hunt, D. F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9528–9533.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Kelleher, N. L., Zubarev, R. A., Bush, K., Furie, B., Furie, B. C., McLafferty, F. W., et al. (1999). Localization of labile posttranslational modifications by electron capture dissociation: The case of gamma-carboxyglutamic acid. Analytical Chemistry, 71(19), 4250–4253.PubMedGoogle Scholar
  92. 92.
    Good, D. M., Wirtala, M., McAlister, G. C., & Coon, J. J. (2007). Performance characteristics of electron transfer dissociation mass spectrometry. Molecular & Cellular Proteomics, 6(11), 1942–1951.Google Scholar
  93. 93.
    Choudhary, C., & Mann, M. (2010). Decoding signalling networks by mass spectrometry-based proteomics. Nature Reviews. Molecular Cell Biology, 11(6), 427–439.PubMedGoogle Scholar
  94. 94.
    Jensen, O. N. (2006). Interpreting the protein language using proteomics. Nature Reviews. Molecular Cell Biology, 7(6), 391–403.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Knight, Z. A., Schilling, B., Row, R. H., Kenski, D. M., Gibson, B. W., & Shokat, K. M. (2003). Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nature Biotechnology, 21(9), 1047–1054.Google Scholar
  96. 96.
    Oda, Y., Nagasu, T., & Chait, B. T. (2001). Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnology, 19(4), 379–382.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Wells, L., Vosseller, K., Cole, R. N., Cronshaw, J. M., Matunis, M. J., & Hart, G. W. (2002). Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Molecular & Cellular Proteomics, 1(10), 791–804.Google Scholar
  98. 98.
    Li, W., Backlund, P. S., Boykins, R. A., Wang, G., & Chen, H. C. (2003). Susceptibility of the hydroxyl groups in serine and threonine to beta-elimination/Michael addition under commonly used moderately high-temperature conditions. Analytical Biochemistry, 323(1), 94–102.PubMedGoogle Scholar
  99. 99.
    Dephoure, N., Zhou, C., Villen, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., et al. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10762–10767.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Tan, C. S., Pasculescu, A., Lim, W. A., Pawson, T., Bader, G. D., & Linding, R. (2009). Positive selection of tyrosine loss in metazoan evolution. Science, 325(5948), 1686–1688.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Zhang, K., Yau, P. M., Chandrasekhar, B., New, R., Kondrat, R., Imai, B. S., et al. (2004). Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: An application for determining lysine 9 acetylation and methylation of histone H3. Proteomics, 4(1), 1–10.PubMedGoogle Scholar
  102. 102.
    Toda, T., Nakamura, M., Morisawa, H., Hirota, M., Nishigaki, R., & Yoshimi, Y. (2010). Proteomic approaches to oxidative protein modifications implicated in the mechanism of aging. Geriatrics & Gerontology International, 10(Suppl 1), S25–S31.Google Scholar
  103. 103.
    Lapko, V. N., Smith, D. L., & Smith, J. B. (2000). Identification of an artifact in the mass spectrometry of proteins derivatized with iodoacetamide. Journal of Mass Spectrometry, 35(4), 572–575.PubMedGoogle Scholar
  104. 104.
    Lundell, N., & Schreitmuller, T. (1999). Sample preparation for peptide mapping–a pharmaceutical quality-control perspective. Analytical Biochemistry, 266(1), 31–47.PubMedGoogle Scholar
  105. 105.
    Windsor, W. T., Syto, R., Tsarbopoulos, A., Zhang, R., Durkin, J., Baldwin, S., et al. (1993). Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10. Biochemistry, 32(34), 8807–8815.PubMedGoogle Scholar
  106. 106.
    Yang, Z., & Attygalle, A. B. (2007). LC/MS characterization of undesired products formed during iodoacetamide derivatization of sulfhydryl groups of peptides. Journal of Mass Spectrometry, 42(2), 233–243.PubMedGoogle Scholar
  107. 107.
    Aslebagh, R., Pfeffer, B. A., Fliesler, S. J., & Darie, C. C. (2016). Mass spectrometry-based proteomics of oxidative stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins. Electrophoresis, 37(20), 2615–2623.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Darie, C. C., Biniossek, M. L., Jovine, L., Litscher, E. S., & Wassarman, P. M. (2004). Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry, 43(23), 7459–7478.PubMedGoogle Scholar
  109. 109.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2012). Automatic determination of disulfide bridges in proteins. Journal of Laboratory Automation, 17(6), 408–416.PubMedGoogle Scholar
  110. 110.
    Spellman, D. S., Deinhardt, K., Darie, C. C., Chao, M. V., & Neubert, T. A. (2008). Stable isotopic labeling by amino acids in cultured primary neurons: Application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Molecular & Cellular Proteomics, 7(6), 1067–1076.Google Scholar
  111. 111.
    Wuhrer, M., Catalina, M. I., Deelder, A. M., & Hokke, C. H. (2007). Glycoproteomics based on tandem mass spectrometry of glycopeptides. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 849(1–2), 115–128.PubMedGoogle Scholar
  112. 112.
    Sokolowska, I., Ngounou Wetie, A. G., Roy, U., Woods, A. G., & Darie, C. C. (2013). Mass spectrometry investigation of glycosylation on tche NXS/T sites in recombinant glycoproteins. Biochimica et Biophysica Acta, 1834(8), 1474–1483.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roshanak Aslebagh
    • 1
    Email author
  • Kelly L. Wormwood
    • 1
  • Devika Channaveerappa
    • 1
  • Armand G. Ngounou Wetie
    • 1
  • Alisa G. Woods
    • 1
  • Costel C. Darie
    • 1
    Email author
  1. 1.Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA

Personalised recommendations