Advertisement

A Paradigm for Democratizing Artificial Intelligence Research

  • Erwan MoreauEmail author
  • Carl Vogel
  • Marguerite Barry
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 159)

Abstract

This proposal outlines a plan for bridging the gap between technology experts and society in the domain of Artificial Intelligence (AI). The proposal focuses primarily on Natural Language Processing (NLP) technology, which is a major part of AI and offers the advantage of addressing problems that non-experts can understand. More precisely, the goal is to advance knowledge at the same time as opening new communication channels between experts and society, in a way which promotes non-expert participation in the conception of NLP technology. Such interactions can happen in the context of open-source development of languages resources, i.e. software tools and datasets; existing usages in various communities show how projects which are open to everyone can greatly benefit from the free participation of enthusiastic contributors (participation is not at all limited to software development). Because NLP research is mostly experimental and relies heavily on software tools and language datasets, this project proposes to interconnect the societal issues related to AI with the NLP research resources issue.

Notes

Acknowledgements

The ADAPT Centre for Digital Content Technology is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

References

  1. 1.
    Ananny, M., Crawford, K.: Seeing without knowing: limitations of the transparency ideal and its application to algorithmic accountability. New Media Soc. 20(3), 973–989 (2018)CrossRefGoogle Scholar
  2. 2.
    Anonymous. AI image recognition fooled by single pixel change (Nov 2017). https://bbc.com. http://www.bbc.com/news/technology-41845878
  3. 3.
    Bardzell, J.: Interaction criticism and aesthetics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pp. 2357–2366. ACM, New York, NY, USA (2009)Google Scholar
  4. 4.
    Benkler, Y.: Freedom in the commons: towards a political economy of information. Duke Law J. 52, 1245–1276 (2003). https://scholarship.law.duke.edu/dlj/vol52/iss6/3
  5. 5.
    Best, J.: IBM watson: the inside story of how the jeopardy-winning supercomputer was born, and what it wants to do Next. TechRepublic. https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next
  6. 6.
    Bikel, D., Zitouni, I.: Multilingual Natural Language Processing Applications: From Theory to Practice, 1st edn. IBM Press (2012)Google Scholar
  7. 7.
    Bonnefon, J., Shariff, A., Rahwan, I.: Autonomous vehicles need experimental ethics: are we ready for utilitarian cars? CoRR (2015). arXiv:1510.03346
  8. 8.
    Bornstein, A.M.: Is artificial intelligence permanently inscrutable? Nautilus (2016). http://nautil.us/issue/40/learning/is-artificial-intelligence-permanently-inscrutable
  9. 9.
    Brekke, K.A., Kipperberg, G., Nyborg, K.: Social interaction and responsibility ascription: the case for household recycling. Land Econ. 86(4), 766–784 (2010)CrossRefGoogle Scholar
  10. 10.
    Castelvecchi, D.: Can we open the black box of AI? Nature 1(538), 20–23 (2016). http://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731CrossRefGoogle Scholar
  11. 11.
    Cookson, C.: DeepMind computer teaches itself to become world’s best Go player. Financ. Times (2017). https://www.newscientist.com/article/2132086-deepminds-ai-beats-worlds-best-go-player-in-latest-face-off
  12. 12.
    European Commission. Key Enabling Technologies. https://ec.europa.eu/growth/industry/policy/key-enabling-technologies_en
  13. 13.
    European Commission. Horizon 2020—Work Programme 2014–2015, General Annexes, G. Technology readiness levels (TRL), July 2014. https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
  14. 14.
    Evans, N., Levinson, S.C.: The myth of language universals: language diversity and its im portance for cognitive science. Behav. Brain Sci. 32, 429–492 (2009)CrossRefGoogle Scholar
  15. 15.
    Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software Project, 2nd edn. O’Reilly Media (Jan 2017). http://www.producingoss.com/
  16. 16.
    Fokkens, A., van Erp, M., Postma, M., Pedersen, T., Vossen, P., Freire, N.: Offspring from reproduction problems: what replication failure teaches us. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pp. 1691–1701, Sofia, Bulgaria. Association for Computational Linguistics, August 2013Google Scholar
  17. 17.
    Friedman, B.: Value-sensitive design. Interactions 3(6), 16–23 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gayford, M.: Robot Art Raises Questions about Human Creativity. MIT Technology Review, Feb 2016. https://www.technologyreview.com/s/600762/robot-art-raises-questions-about-human-creativity
  19. 19.
    Graham, Y., Ma, Q., Baldwin, T., Liu, Q., Parra, C., Scarton, C.: Improving evaluation of document-level machine translation quality estimation. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, pp. 356–361, Valencia, Spain. Association for Computational Linguistics (2017)Google Scholar
  20. 20.
    Hand, D.J.: Classifier technology and the illusion of progress. Stat. Sci. 21(1), 1–14 (2006).  https://doi.org/10.1214/088342306000000060MathSciNetCrossRefGoogle Scholar
  21. 21.
    Johnson, D.G., Verdicchio, M.: Reframing AI discourse. Minds Mach. 27(4), 575–590 (2017)CrossRefGoogle Scholar
  22. 22.
    Kelly, K.: The Myth of a superhuman AI. Wired (2017). https://www.wired.com/2017/04/the-myth-of-a-superhuman-ai
  23. 23.
    Knight, W.: Google’s Self-Training AI Turns Coders into Machine-Learning Masters. MIT Technology Review (Jan 2018). https://www.technologyreview.com/s/609996/googles-self-training-ai-turns-coders-into-machine-learning-masters
  24. 24.
    Kroulek, A.: Crowd-Sourced Translation Goes Awry For Facebook. k International: The Language Blog. (Aug 2010). https://www.k-international.com/blog/wrong-translation-for-facebook/
  25. 25.
    Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press (1962)Google Scholar
  26. 26.
    Lafourcade, M., Joubert, A., Le Brun N.: GWAPs for Natural Language Processing, pp. 47–72. Wiley (2015)Google Scholar
  27. 27.
    Le Dantec, C., Poole, E., Wyche, S. (2009) Values as lived experience: evolving value sensitive design in support of value discovery. In: Conference on Human Factors in Computing Systems—Proceedings, pp. 1141–1150 (2009)Google Scholar
  28. 28.
    Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned from word embeddings. Trans. Assoc. Comput. Linguist. 3, 211–225 (2015)CrossRefGoogle Scholar
  29. 29.
    Lewis T.: IBM’s Watson says it can analyze your personality in seconds—but the results are all over the place. Business Insider UK (July 2015). http://uk.businessinsider.com/ibms-supercomputer-can-now-analyze-your-personality-based-on-a-writing-sample-heres-how-you-try-it-2015-7
  30. 30.
    Lunden, I.: AWS ramps up in AI with new consultancy services and Rekognition features. TechCrunch (Nov 2017). https://techcrunch.com/2017/11/22/aws-ai/
  31. 31.
    Masterman, M.: The nature of a paradigm. In: Lakatos, I., Musgrave, A. (eds.), Criticism and the Grown of Knowledge, pp. 59–89. Cambridge University Press (1970)Google Scholar
  32. 32.
    McMillan, R.: AI has arrived, and that really worries the world’s brightest minds. Wired (2015). https://www.wired.com/2015/01/ai-arrived-really-worries-worlds-brightest-minds
  33. 33.
    Metcalf, J., Keller, E.F., Boyd, D.: Perspectives on Big Data, Ethics, and Society, White Paper (2017)Google Scholar
  34. 34.
    Moreau, E.: Identification of natural languages in the limit: exploring frontiers of finite elasticity for general Combinatory Grammars. In: 12th Conference on Formal Grammars (FG 2007), page Online Proceedings, Dublin, Ireland, France, Aug. 2007. CSLI Publications Online Proceedings (2007)Google Scholar
  35. 35.
    Moreau, E., Vogel, C.: Weakly supervised approaches for quality estimation. Mach. Trans. 27(3), 257–280 (2013)CrossRefGoogle Scholar
  36. 36.
    Moreau, E., Vogel, C.: Limitations of MT quality estimation supervised systems: the tails prediction problem. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics, Dublin, Ireland, Aug 2014, pp. 2205–2216. Dublin City University and Association for Computational Linguistics (2014)Google Scholar
  37. 37.
    Moreau, E., Vogel, C.: Multilingual word segmentation: training many language-specific Tokenizers Smoothly thanks to the universal dependencies corpus. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan (May 2018)Google Scholar
  38. 38.
    Moreau, E., Yvon, F., Cappé, O.: Robust similarity measures for named entities matching. In: COLING 2008, Manchester, UK, pp. 593–600. ACL (Aug 2008)Google Scholar
  39. 39.
    Newman, A.A.: Translators Scoff at LinkedIn’s Offer of \$0 an Hour. New York Times (June 2009). http://www.nytimes.com/2009/06/29/technology/start-ups/29linkedin.html
  40. 40.
    Nivre, J., Agić, Ž., Ahrenberg, L., Aranzabe, M.J., Asahara, M., Atutxa, A., Ballesteros, M., Bauer, J., Bengoetxea, K., Bhat, R.A., Bick, E., Bosco, C., Bouma, G., Bowman, S., Candito, M., Cebiroǧlu Eryiǧit, G., Celano, G.G.A., Chalub, F., Choi, J., Çöltekin, Ç., Connor, M., Davidson, E., de Marneffe, M.-C., de Paiva, V., de Ilarraza, A.D., Dobrovoljc, K., Dozat, T., Droganova, K., Dwivedi, P., Eli, M., Erjavec, T., Farkas, R., Foster, J., Freitas, C., Gajdošová, K., Galbraith, D., Garcia, M., Ginter, F., Goenaga, I., Gojenola, K., Gökörmak, M., Goldberg, Y., Gómez Guinovart, X., Saavedra, B.G., Grioni, M., Grūzītis, N., Guillaume, B., Habash, N., Hajič, J., Hà, L., Haug, D., Hladká, B., Hohle, P., Ion, R., Irimia, E., Johannsen, A., Jørgensen, F., Kaşıkara, H., Kanayama, H., Kanerva, J., Kotsyba, N., Krek, S., Laippala, V., Hng, P.L., Lenci, A., Ljubešić, N., Lyashevskaya, O., Lynn, T., Makazhanov, A., Manning, C., Mărăduc, C., Mareček, D., Martínez Alonso, H., Martins, A., Mašek, J., Matsumoto, Y., McDonald, R., Missilä, A., Mititelu, V., Miyao, Y., Montemagni, S., More, A., Mori, S., Moskalevskyi, B., Muischnek, K., Mustafina, N., Müürisep, K., Nguy Th, L., Nguy Th Minh, H., Nikolaev, V., Nurmi, H., Ojala, S., Osenova, P., Øvrelid, L., Pascual, E., Passarotti, M., Perez, C.-A., Perrier, G., Petrov, S., Piitulainen, J., Plank, B., Popel, M., Pretkalniņa, L., Prokopidis, P., Puolakainen, T., Pyysalo, S., Rademaker, A., Ramasamy, L., Real, L., Rituma, L., Rosa, R., Saleh, S., Sanguinetti, M., Saulīte, B., Schuster, S., Seddah, D., Seeker, W., Seraji, M., Shakurova, L., Shen, M., Sichinava, D., Silveira, N., Simi, M., Simionescu, R., Simkó, K., Šimková, M., Simov, K., Smith, A., Suhr, A., Sulubacak, U., Szántó, Z., Taji, D., Tanaka, T., Tsarfaty, R., Tyers, F., Uematsu, S., Uria, L., van Noord, G., Varga, V., Vincze, V., Washington, J.N., Žabokrtský, Z., Zeldes, A., Zeman, D., Zhu, H.: Universal dependencies 2.0. LINDAT/CLARIN Digital Library at the Institute of Formal and Applied Linguistics, Charles University (2017)Google Scholar
  41. 41.
    Nuzzo, R.: How scientists fool themselves—and how they can stop. Nature (2015). http://www.nature.com/news/how-scientists-fool-themselves-and-how-they-can-stop-1.18517
  42. 42.
    OECD Data.: Population with tertiary education (2017). https://data.oecd.org/eduatt/population-with-tertiary-education.htm
  43. 43.
    Pearson, J.: Why an AI-Judged beauty contest picked nearly all white winners. Motherboard (2016). https://motherboard.vice.com/en_us/article/78k7de/why-an-ai-judged-beauty-contest-picked-nearly-all-white-winners
  44. 44.
    Popowich, F., Vogel, C.: A logic based implementation of head-driven phrase structure grammar. In: Brown, C., Koch, G. (eds.) Natural Language Understanding and Logic Programming, vol. III, pp. 227–246. Elsevier, North-Holland (1991)Google Scholar
  45. 45.
    Reinhardt, A.: There’s Sanity Returning. Bus. Week 3579, 62–64 (1998)Google Scholar
  46. 46.
    Roser, M., Ortiz-Ospina, E.: Literacy (2017). https://ourworldindata.org/literacy/
  47. 47.
    Sample, I.: Artificial intelligence risks GM-style public backlash, experts warn. https://www.theguardian.com (Nov 2017). https://www.theguardian.com/science/2017/nov/01/artificial-intelligence-risks-gm-style-public-backlash-experts-warn
  48. 48.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International Conference on New Methods in Language Processing, Manchester, UK (1994)Google Scholar
  49. 49.
    Searle, J.R.: Minds, brains, and programs. Behav. Brain Sci. 3(3), 417–424 (1980)CrossRefGoogle Scholar
  50. 50.
    Sengers, P., Boehner, K., David, S., Kaye, J.J.: Reflective design. In: Proceedings of the 4th Decennial Conference on Critical Computing: Between Sense and Sensibility, CC ’05, pp. 49–58, New York, NY, USA. ACM (2005)Google Scholar
  51. 51.
    Shilton, K., Anderson, S.: Blended, not bossy: ethics roles, responsibilities and expertise in design. Interact. Comput. 29(1), 71–79 (2017)CrossRefGoogle Scholar
  52. 52.
    Sneddon, J.: Why linux users make the most valuable customers. OMG! Ubuntu! (July 2017). http://www.omgubuntu.co.uk/2017/07/linux-users-are-more-valuable-customers
  53. 53.
    Titcomb, J.: ’Facebook is listening to me’: why this conspiracy theory refuses to die (Oct 2017). http://www.telegraph.co.uk. http://www.telegraph.co.uk/technology/2017/10/30/facebook-listening-conspiracy-theory-refuses-die
  54. 54.
    van Wynsberghe, A., Robbins, S.: Ethicist as designer: a pragmatic approach to ethics in the lab. Sci. Eng. Ethics 20(4), 947–961 (2014)CrossRefGoogle Scholar
  55. 55.
    Vogel, C.M., Hahn, U., Branigan, H.: Cross-serial dependencies are not hard to process. In Proceedings of the 16th International Conference on Computational Linguistics, pp. 157–162. COLING‘96, Copenhagen, Denmark (1996)Google Scholar
  56. 56.
    Yuste, R., Goering, S., y Arcas, B.A., Bi, G., Carmena, J.M., Carter, A., Fins, J.J., Friesen, P., Gallant, J., Huggins, J.E., Illes, J., Kellmeyer, P., Klein, E., Marblestone, A., Mitchell, C., Parens, E., Pham, M., Rubel, A., Sadato, N., Sullivan, L.S., Teicher, M., Wasserman, D., Wexler, A., Whittaker, M., Wolpaw, J.: Four ethical priorities for neurotechnologies and AI. Nature 1(551), 159–163 (2017). https://www.nature.com/news/four-ethical-priorities-for-neurotechnologies-and-ai-1.22960CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computational Linguistics GroupTrinity College Dublin & the SFI ADAPT CentreDublinIreland
  2. 2.School of Information and Communication StudiesUniversity College DublinDublinIreland

Personalised recommendations