Numerical Analysis of the Risk of Pelvis Injuries Under Multidirectional Impact Load

Conference paper


This work presents the results of a numerical analysis of the pelvic ring model subjected to multidirectional impact impulse loading. The action mechanism behind widespread pelvic fractures resulting from combined lateral, vertical, and longitudinal forces has not been sufficiently explained in the literature yet. The elaborated finite element model of the human pelvis based on CT scans contains a bi-layered structure of bone, varying stiffness of pelvic ligaments and hyperelastic behavior of cartilage. The numerical analysis was performed using a force value of 10 kN, equivalent to a velocity of 12 m/s acting in the range ±45° in each direction. The performed analysis indicates the von Mises stress is concentrated in the femur under lateral–vertical impact load, in the frontal part of the pelvic ring under vertical–lateral, and in the wings of the ilium under lateral–longitudinal impact load. The most extensive injuries to the pelvic ring were observed under vertical–longitudinal impact load, causing interruption of the pelvic continuity.


Finite element modeling Pelvic injury Multidirectional impact load 


  1. 1.
    Buller LT, Best MJ, Quinnan SM (2016) A Nationwide analysis of pelvic ring fractures: incidence and trends in treatment, length of stay, and mortality. Geriatr Orthop Surg Rehabil 7(1):9–17CrossRefGoogle Scholar
  2. 2.
    Alton TB, Gee AO (2014) Classifications in brief: Young and Burgess classification of pelvic ring injuries. Clin Orthop Relat Res 472(8):2338–2342CrossRefGoogle Scholar
  3. 3.
    Salzar RS, Genovese D, Bass CR, Bolton JR, Guillemot H, Damon AM, Crandall JR (2009) Load path distribution within the pelvic structure under lateral loading. Int J Crashworthiness 14(1):99–110CrossRefGoogle Scholar
  4. 4.
    Weinlein JC, Mashru RP, Perez EA, Johnson SE (2018) Lateral compression-I pelvic ring injury: not benign to the developing Fetus. J Orthop Trauma 32(2):100–103CrossRefGoogle Scholar
  5. 5.
    Salzar RS, Bass CR, Kent R, Millington S, Davis M, Lucas S, Rudd R, Folk B, Donnellan L, Murakami D, Kobayashi S (2006) Development of injury criteria for pelvic fracture in frontal crashes. Traffic Inj Prev 7:299–305CrossRefGoogle Scholar
  6. 6.
    Fu CY, Hsieh CH, Wu SC et al (2013) Anterior-posterior compression pelvic fracture increases the probability of requirement of bilateral embolization. Am J Emerg Med 31(1):42–49CrossRefGoogle Scholar
  7. 7.
    Lopez-Valdes FJ, Riley PO, Lessley DJ, Arbogast KB, Seacrist T, Balasubramanian S, Maltese M, Kent R (2014) The six degrees of freedom motion of the human head, spine, and pelvis in a frontal impact. Traffic Inj Prev 15:294–301CrossRefGoogle Scholar
  8. 8.
    Majumder S, Roychowdhury A, Pal S (2007) Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis–femur–soft tissue complex with simplified representation of whole body. Med Eng Phys 29(10):1167–1178CrossRefGoogle Scholar
  9. 9.
    Hanger HC (2017) Low-impact flooring: does it reduce fall-related injuries? J Am Med Dir Assoc 18(7):588–591CrossRefGoogle Scholar
  10. 10.
    Majumder S, Roychowdhury A, Pal S (2008) Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations. J Biomech 41(13):2834–2842CrossRefGoogle Scholar
  11. 11.
    Reynolds BM, Balsano NA, Reynolds FX (1971) Falls from heights: a surgical experience of 200 consecutive cases. Ann Surg 174(2):304–308CrossRefGoogle Scholar
  12. 12.
    Hewitt J, Guilak F, Glisson R, Vail P (2001) Regional material properties of the human hip joint capsule ligaments. J Orthop Res 19:359–364CrossRefGoogle Scholar
  13. 13.
    Arkusz K, Klekiel T, Sławiński G, Będziński R (2019) Influence of energy absorbers on Malgaigne fracture mechanism in lumbar-pelvic system under vertical impact load. Comput Methods Biomech Biomed Eng 1025–5842:1–11Google Scholar
  14. 14.
    Song R, Liu J, Wang W, Cui M (2016) Dynamic simulation of lumbar vertebrae and pelvis in human falls. Acta Medica Mediterranea 32:593–597Google Scholar
  15. 15.
    Klekiel T, Arkusz K, Sławiński G, Będziński R (2019) Prediction of the segmental pelvic ring fractures under impact loadings during car crash. In: Arkusz K, Będziński R, Klekiel T, Piszczatowski S (eds) Biomechanics in medicine and biology. BIOMECHANICS 2018. Advances in intelligent systems and computing, vol 831. Springer, ChamGoogle Scholar
  16. 16.
    Soles GLS, Ferguson TA (2012) Fragility fractures of the pelvis. Curr Rev Musculoskelet Med 5(3):222–228CrossRefGoogle Scholar
  17. 17.
    Guthrie H, Owen R, Bircher M (2010) Fractures of the pelvis. J Bone Joint Surg (Br) 92:1481–1488CrossRefGoogle Scholar
  18. 18.
    Martel DR, Levine IC, Pretty SP, Laing AC (2018) The influence of muscle activation on impact dynamics during lateral falls on the hip. J Biomech 66:111–118CrossRefGoogle Scholar
  19. 19.
    Arkusz K, Klekiel T, Niezgoda TM, Będziński R (2018) The influence of osteoporotic bone structures of the pelvic-hip complex on stress distribution under impact load. Acta Bioeng Biomech 20(1):29–38Google Scholar
  20. 20.
    Shi D, Wang F, Wang D, Li X, Wang Q (2014) 3-D finite element analysis of the influence of synovial condition in sacroiliac joint on the load transmission in human pelvic system. Med Eng Phys 36(6):745–753CrossRefGoogle Scholar
  21. 21.
    Fan Y, Lei J, Zhu F, Li Z, Chen W, Liu X (2015) Biomechanical analysis of the fixation system for t-shaped acetabular fracture. Comput Math Methods Med 2015:1–10CrossRefGoogle Scholar
  22. 22.
    Hu P, Wu T, Wang HZ, Qi XZ, Yao J, Cheng XD, Chen W, Zhang YZ (2017) Influence of different boundary conditions in finite element analysis on pelvic biomechanical load transmission. Orthop Surg 9(1):115–122CrossRefGoogle Scholar
  23. 23.
    Zhou Y, Min L, Liu Y, Shi R, Zhang W, Zhang H, Duan H, Tu C (2013) Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction. Int Orthop 37:653–658CrossRefGoogle Scholar
  24. 24.
    Dawson JM, Khmelniker BV, Mcandrew MP (1999) Analysis of the structural behavior of the pelvis during lateral impact using the finite element method. Accid Anal Prev 31:109–119CrossRefGoogle Scholar
  25. 25.
    Majumder S, Roychowdhury A, Pal S (2008) Three-dimensional finite element simulation of pelvic fracture during side impact with pelvis–femur–soft tissue complex. Int J Crashworthines 13:313–329CrossRefGoogle Scholar
  26. 26.
    Dehghani F, Fathi A (2017) Challenges for Cartilage Regeneration. In: Li Q, Mai YW (eds) Biomaterials for implants and scaffolds. Springer, BerlinGoogle Scholar
  27. 27.
    Caracchini G, Cavalli L (2010) Severe osteoporosis: diagnosis of femoral fractures. Clin Cases Miner Bone Metab 7(2):97–101Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Biomedical Engineering, Department of Mechanical EngineeringUniversity of Zielona GoraZielona GoraPoland

Personalised recommendations