Advertisement

Automated Detection of Eye Related Diseases Using Digital Image Processing

  • Shailesh Kumar
  • Shashwat Pathak
  • Basant KumarEmail author
Chapter

Abstract

This chapter presents techniques for automated detection of various eye diseases using digital image processing. Human eyes suffer from variety of abnormalities due to aging, trauma and disease like diabetes. The leading causes of blindness throughout the world are cataract, glaucoma, macular degeneration, diabetic retinopathy, retinal detachment and diabetic macular edema. These eye diseases are detected and diagnosed by ophthalmologist and trained technicians. The imaging systems needed for detection of abnormalities are ophthalmoscopy, fundus photography, optical coherence tomography, ultrasound imaging, and Heidelberg retinal tomography. In developing countries like India, lack of eye care centres and non-availability of ophthalmologists are very common in rural and remote areas. Early detection, followed by appropriate medical treatment of various eye diseases can solve this problem to a large extent. Automated detection of eye diseases through analysis of different types of medical images provides a better alternative for timely diagnosis and treatment of the eye diseases. In general, the steps involved in image processing based automated diagnostic techniques are image acquisition, pre-processing, extraction of region of interest, feature extraction, and classification. The need for automated diagnosis system, study of various imaging techniques, current status and brief explanation of various eye diseases detection algorithms have been discussed in this chapter.

References

  1. 1.
    R. R. A. Bourne et al., “Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis,” Lancet Glob. Heal., vol. 5, no. 9, pp. e888–e897, 2017.Google Scholar
  2. 2.
    T. R. Fricke et al., “Global Prevalence of Presbyopia and Vision Impairment from Uncorrected Presbyopia: Systematic Review, Meta-analysis, and Modelling,” Ophthalmology, vol. 125, no. 10, pp. 1492–1499, 2018.CrossRefGoogle Scholar
  3. 3.
    T. Vos et al., “Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015,” Lancet, vol. 388, no. 10053, pp. 1545–1602, 2016.Google Scholar
  4. 4.
    T. Vos et al., “Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013,” Lancet, vol. 386, no. 9995, pp. 743–800, 2015.Google Scholar
  5. 5.
    R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-Related Macular Degeneration,” N. Engl. J. Med., vol. 358, no. 24, pp. 2606–2617, 2008.CrossRefGoogle Scholar
  6. 6.
    S. B. J. and D. Welfer2 and Programa, “Automatic Detection of Microaneurysms and Haemorrhages in Color Eye Fundus Images,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 5, pp. 21–37, 2013.Google Scholar
  7. 7.
    D. Mitry, D. G. Charteris, B. W. Fleck, H. Campbell, and J. Singh, “The epidemiology of rhegmatogenous retinal detachment: Geographical variation and clinical associations,” Br. J. Ophthalmol., vol. 94, no. 6, pp. 678–684, 2010.CrossRefGoogle Scholar
  8. 8.
    R. Acheson, “Retinal detachment.,” Ir. Med. J., vol. 84, no. 2, pp. 45–46, 1991.Google Scholar
  9. 9.
    A. Mistlberger, J. M. Liebmann, D. S. Greenfield, and M. E. Pons, “Heidelberg Retina Tomography and Optical Coherence Tomography in Normal, Ocular- hypertensive, and Glaucomatous Eyes,” pp. 2027–2032.Google Scholar
  10. 10.
    R. Klein, M. D. Knudtson, K. E. Lee, R. Gangnon, and B. E. K. Klein, “The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: The Twenty-five-Year Incidence of Macular Edema in Persons with Type 1 Diabetes,” OPHTHA, vol. 116, no. 3, pp. 497–503, 2008.CrossRefGoogle Scholar
  11. 11.
    M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging, vol. 7, no. 3, pp. 351–364, 2016.CrossRefGoogle Scholar
  12. 12.
    J. G. Fujimoto, “Optical coherence tomography,” vol. 2147, no. 01, pp. 1099–1111, 2001.Google Scholar
  13. 13.
    P. Informatik, M. Author, L. D. Advisor, Y. Z. Medizingruppe, and I. Fakult, “Optical Coherence Tomography,” 2011.Google Scholar
  14. 14.
    C. E. Ehrhart, “Delivering Tomorrow Logistics 2050 A Scenario Study,” vol. 24, no. 3, p. 184, 2012.Google Scholar
  15. 15.
    N. Fundus, “Monochromatic Ophthalmoscopy The Normal Fundus,” 2015.Google Scholar
  16. 16.
    C. Alexandrescu et al., “Confocal scanning laser ophthalmoscopy in glaucoma diagnosis and management,” vol. 3, no. 3, pp. 229–234, 2010.Google Scholar
  17. 17.
    P. Adarsh and D. Jeyakumari, “A Novel Method for Micro Aneurysm Detection and Diabetic Retinopathy Diagnosis,” Int. J. Comput. Appl., pp. 42–46, 2013.Google Scholar
  18. 18.
    B. Zhang, X. Wu, J. You, Q. Li, and F. Karray, “Detection of microaneurysms using multi-scale correlation coefficients,” Pattern Recognit., vol. 43, no. 6, pp. 2237–2248, 2010.CrossRefGoogle Scholar
  19. 19.
    K. M. Adal, D. Sidibé, S. Ali, E. Chaum, T. P. Karnowski, and F. Mériaudeau, “Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning,” Comput. Methods Programs Biomed., vol. 114, no. 1, pp. 1–10, 2014.CrossRefGoogle Scholar
  20. 20.
    S. S. Rahim, V. Palade, J. Shuttleworth, and C. Jayne, “Automatic Screening and Classification of Diabetic Retinopathy Fundus Images,” Commun. Comput. Inf. Sci., vol. 459 CCIS, pp. 113–122, 2014.Google Scholar
  21. 21.
    S. S. Rahim, V. Palade, C. Jayne, A. Holzinger, and J. Shuttleworth, “Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9250, 2015.Google Scholar
  22. 22.
    R. Inbarathi and R. Karthikeyan, “Detection of Retinal Hemorrhage in Fundus Images by Classifying the Splat Features Using SVM,” 2014 Int. Conf. Innov. Eng. Technol., vol. 3, no. 3, pp. 1979–1986, 2014.Google Scholar
  23. 23.
    P. Jitpakdee, P. Aimmanee, and B. Uyyanonvara, “A survey on hemorrhage detection in diabetic retinopathy retinal images,” 2012 9th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol. ECTI-CON 2012, pp. 12–15, 2012.Google Scholar
  24. 24.
    J. P. Bae, K. G. Kim, H. C. Kang, C. B. Jeong, K. H. Park, and J. M. Hwang, “A study on hemorrhage detection using hybrid method in fundus images,” J. Digit. Imaging, vol. 24, no. 3, pp. 394–404, 2011.CrossRefGoogle Scholar
  25. 25.
    P. N. N. Gaikwad and P. P. R. Badadapure, “Image Processing Technique for Hard Exudates Detection for diagnosis of Diabetic Retinopathy,” Int. J. Recent Innov. Trends Comput. Commun., vol. 3, no. 4, pp. 4–7, 2015.Google Scholar
  26. 26.
    E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification,” IEEE Trans. Med. Imaging, vol. 26, no. 10, pp. 1357–1365, 2007.CrossRefGoogle Scholar
  27. 27.
    K. BahadarKhan, A. A. Khaliq, and M. Shahid, “A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding,” PLoS One, vol. 11, no. 7, pp. 1–19, 2016.CrossRefGoogle Scholar
  28. 28.
    M. Kaur and R. Talwar, “Automatic Extraction of Blood Vessel and Eye Retinopathy Detection,” vol. 2, no. 4, pp. 57–61, 2015.Google Scholar
  29. 29.
    S. S. Rahim, C. Jayne, V. Palade, and J. Shuttleworth, “Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening,” Neural Comput. Appl., vol. 27, no. 5, pp. 1149–1164, 2016.CrossRefGoogle Scholar
  30. 30.
    R. A. Welikala et al., “Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification,” Comput. Methods Programs Biomed., vol. 114, no. 3, pp. 247–261, 2014.CrossRefGoogle Scholar
  31. 31.
    B. Kumar, Shailesh and Kumar, “Diabetic Retinopathy Detection by Extracting Area and Number of Microaneurysm from Colour Fundus Image,” 2018 5th Int. Conf. Signal Process. Integr. Networks, pp. 359–364, 2018.Google Scholar
  32. 32.
    S. H. Rasta, M. E. Partovi, H. Seyedarabi, and A. Javadzadeh, “A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement,” J Med Signals Sens, vol. 5, no. 1, pp. 40–48, 2015.Google Scholar
  33. 33.
    A. F. M. Hani, T. A. Soomro, I. Faye, N. Kamel, and N. Yahya, “Denoising methods for retinal fundus images,” 2014 5th Int. Conf. Intell. Adv. Syst. Technol. Converg. Sustain. Futur. ICIAS 2014 - Proc., no. 2, 2014.Google Scholar
  34. 34.
    S. C. Huang, F. C. Cheng, and Y. S. Chiu, “Efficient contrast enhancement using adaptive gamma correction with weighting distribution,” IEEE Trans. Image Process., vol. 22, no. 3, pp. 1032–1041, 2013.MathSciNetCrossRefGoogle Scholar
  35. 35.
    V. Thirilogasundari, V. S. Babu, and S. A. Janet, “Fuzzy based salt and pepper noise removal using adaptive switching median filter,” Procedia Eng., vol. 38, pp. 2858–2865, 2012.CrossRefGoogle Scholar
  36. 36.
    segio B. Junior and D. Welfer, “Automatic Detection of Microaneurysms Ang Haemorrhages in Color Eye Fundus Images,” Southeast Asian J Trop Med Public Heal., vol. 34, no. 4, pp. 751–757, 2003.Google Scholar
  37. 37.
    D. Welfer, J. Scharcanski, and D. R. Marinho, “Fovea center detection based on the retina anatomy and mathematical morphology,” Comput. Methods Programs Biomed., vol. 104, no. 3, pp. 397–409, 2011.CrossRefGoogle Scholar
  38. 38.
    M. Niemeijer, M. D. Abràmoff, and B. van Ginneken, “Fast detection of the optic disc and fovea in color fundus photographs,” Medical Image Analysis, vol. 13, no. 6. pp. 859–870, 2009.CrossRefGoogle Scholar
  39. 39.
    B. Antal and A. Hajdu, “An Ensemble-Based System for Microaneurysm Detection and Diabetic Retinopathy Gradin,” IEEE Trans. Biomed. Eng., vol. 5, no. 1, pp. 70–77, 2012.Google Scholar
  40. 40.
    W. S. et al., “Localizing Microaneurysms in Fundus Images Through Singular Spectrum Analysis,” IEEE Trans. Biomed. Eng., vol. 64, no. 5, pp. 990–1002, 2017.CrossRefGoogle Scholar
  41. 41.
    L. Seoud, T. Hurtut, J. Chelbi, F. Cheriet, and J. M. P. Langlois, “Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening,” IEEE Trans. Med. Imaging, vol. 35, no. 4, pp. 1116–1126, 2016.CrossRefGoogle Scholar
  42. 42.
    W. Cao, N. Czarnek, J. Shan, and L. Li, “Microaneurysm detection using principal component analysis and machine learning methods,” IEEE Trans. Nanobioscience, vol. 17, no. 3, pp. 191–198, 2018.CrossRefGoogle Scholar
  43. 43.
    L. Zhou, Y. Zhao, J. Yang, Q. Yu, and X. Xu, “Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images,” IET Image Process., vol. 12, no. 4, pp. 563–571, 2018.CrossRefGoogle Scholar
  44. 44.
    B. Dashtbozorg, J. Zhang, F. Huang, and B. M. T. H. Romeny, “Retinal Microaneurysms Detection Using Local Convergence Index Features,” IEEE Trans. Image Process., vol. 27, no. 7, pp. 3300–3315, 2018.MathSciNetCrossRefGoogle Scholar
  45. 45.
    R. N. Weinreb, T. Aung, and F. A. Medeiros, “The Pathophysiology and Treatment of Glaucoma,” Jama, vol. 311, no. 18, p. 1901, 2014.CrossRefGoogle Scholar
  46. 46.
    A. Issac, M. Partha Sarathi, and M. K. Dutta, “An adaptive threshold based image processing technique for improved glaucoma detection and classification,” Comput. Methods Programs Biomed., vol. 122, no. 2, pp. 229–244, 2015.CrossRefGoogle Scholar
  47. 47.
    S. A. Hussain and A. N. Holambe, “Automated Detection and Classification of Glaucoma from Eye Fundus Images: A Survey,” Int. J. Comput. Sci. Inf. Technol., vol. 6, no. 2, pp. 1217–1224, 2015.Google Scholar
  48. 48.
    M. D. Michael, “Optic disc size, an important consideration in the glaucoma evaluation,” Clin. Eye Vis. Care, vol. 11, no. 2, pp. 59–62, 1999.Google Scholar
  49. 49.
    J. B. Jonas, “Glaucomatous Parapapillary Atrophy,” 2015.Google Scholar
  50. 50.
    W. M. Budde and J. B. Jonas, “Influence of cilioretinal arteries on neuroretinal rim and parapapillary atrophy in glaucoma,” Investig. Ophthalmol. Vis. Sci., vol. 44, no. 1, pp. 170–174, 2003.CrossRefGoogle Scholar
  51. 51.
    M. Seong et al., “Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma,” Investig. Ophthalmol. Vis. Sci., vol. 51, no. 3, pp. 1446–1452, 2010.CrossRefGoogle Scholar
  52. 52.
    J. Cheng et al., “Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8151 LNCS, no. PART 3, pp. 421–428, 2013.Google Scholar
  53. 53.
    Y. For, E. Of, and M. Using, “a N E Fficient D Ecision S Upport S Ystem for D Etection of G Laucoma in F Undus I Mages Using,” vol. 2, no. 1, pp. 227–240, 2012.Google Scholar
  54. 54.
    J. B. Li and M. Y. Li, “Neuroretinal rim area in early glaucoma.,” Chin. Med. J. (Engl)., vol. 106, no. 3, pp. 191–195, 1993.Google Scholar
  55. 55.
    N. Harizman et al., “The ISNT Rule and Differentiation of Normal From Glaucomatous Eyes,” Arch Ophthalmol, vol. 124, pp. 1579–1583, 2006.CrossRefGoogle Scholar
  56. 56.
    J. Pruthi and S. Mukherjee, “Computer Based Early Diagnosis of Glaucoma in Biomedical Data Using Image Processing and Automated Early Nerve Fiber Layer Defects Detection using Feature Extraction in Retinal Colored Stereo Fundus Images,” vol. 4, no. 4, pp. 1822–1828, 2013.Google Scholar
  57. 57.
    K. Narasimhan and K. Vijayarekha, “An efficient automated system for glaucoma detection using fundus image,” J. Theor. Appl. Inf. Technol., vol. 33, no. 1, pp. 104–110, 2011.Google Scholar
  58. 58.
    R. Bock, J. Meier, L. G. Nyúl, J. Hornegger, and G. Michelson, “Glaucoma risk index: Automated glaucoma detection from color fundus images,” Med. Image Anal., vol. 14, no. 3, pp. 471–481, 2010.CrossRefGoogle Scholar
  59. 59.
    A. A. A. Youssif, A. Z. Ghalwash, and A. S. Ghoneim, “Comparative Study of Contrast Enhancement and Illumination Equalization Methods for Retinal Vasculature Segmentation,” Cairo Int. Biomed. Eng. Conf., no. DECEMBER, p. 5, 2006.Google Scholar
  60. 60.
    B. Al-Diri, A. Hunter, and D. Steel, “An Active Contour Model for Segmenting and Measuring Retinal Vessels,” IEEE Trans. Med. Imaging, vol. 28, no. 9, pp. 1488–1497, 2009.CrossRefGoogle Scholar
  61. 61.
    J. Nayak, R. Acharya U., P. S. Bhat, N. Shetty, and T. C. Lim, “Automated diagnosis of glaucoma using digital fundus images,” J. Med. Syst., vol. 33, no. 5, pp. 337–346, 2009.CrossRefGoogle Scholar
  62. 62.
    C. K. Lu, T. B. Tang, A. Laude, B. Dhillon, and A. F. Murray, “Parapapillary atrophy and optic disc region assessment (PANDORA): retinal imaging tool for assessment of the optic disc and parapapillary atrophy,” J. Biomed. Opt., vol. 17, no. 10, p. 106010, 2012.CrossRefGoogle Scholar
  63. 63.
    J. Cheng, F. Yin, D. W. K. Wong, D. Tao, and J. Liu, “Sparse dissimilarity-constrained coding for glaucoma screening,” IEEE Trans. Biomed. Eng., vol. 62, no. 5, pp. 1395–1403, 2015.CrossRefGoogle Scholar
  64. 64.
    T. Khalil, M. U. Akram, H. Raja, A. Jameel, and I. Basit, “Detection of Glaucoma Using Cup to Disc Ratio from Spectral Domain Optical Coherence Tomography Images,” IEEE Access, vol. 6, pp. 4560–4576, 2018.CrossRefGoogle Scholar
  65. 65.
    M. N. Zahoor and M. M. Fraz, “Fast optic disc segmentation in retinal images using polar transform,” Commun. Comput. Inf. Sci., vol. 723, pp. 38–49, 2017.Google Scholar
  66. 66.
    M. N. Zahoor and M. M. Fraz, “A correction to the article fast optic disc segmentation in retina using polar transform,” IEEE Access, vol. 6, pp. 4845–4849, 2018.CrossRefGoogle Scholar
  67. 67.
    R. U. Acharya, W. Yu, K. Zhu, J. Nayak, T. C. Lim, and J. Y. Chan, “Identification of cataract and post-cataract surgery optical images using artificial intelligence techniques,” J. Med. Syst., vol. 34, no. 4, pp. 619–628, 2010.CrossRefGoogle Scholar
  68. 68.
    L. Guo, J. J. Yang, L. Peng, J. Li, and Q. Liang, “A computer-aided healthcare system for cataract classification and grading based on fundus image analysis,” Comput. Ind., vol. 69, no. May, pp. 72–80, 2015.Google Scholar
  69. 69.
    H. Li et al., “Lens image registration for cataract detection,” Proc. 2011 6th IEEE Conf. Ind. Electron. Appl. ICIEA 2011, pp. 132–135, 2011.Google Scholar
  70. 70.
    H. Shen, H. Hao, L. Wei, and Z. Wang, “An Image Based Classification Method for Cataract,” 2008 Int. Symp. Comput. Sci. Comput. Technol., pp. 583–586, 2008.Google Scholar
  71. 71.
    tien yin wong li Huiqi, Lim, J. H., paul mitchell, ava grace tan, jie jin wang, “A Computer-Aided Diagnostic System of Neuclear Cataract.”.Google Scholar
  72. 72.
    R. Srivastava et al., “Automatic nuclear cataract grading using image gradients,” J. Med. Imaging, vol. 1, no. 1, 2014.CrossRefGoogle Scholar
  73. 73.
    T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol., vol. 134, no. 1, pp. 1–9, 2002.CrossRefGoogle Scholar
  74. 74.
    C. J. Hammond et al., “The heritability of age-related cortical cataract: The twin eye study,” Investig. Ophthalmol. Vis. Sci., vol. 42, no. 3, pp. 601–605, 2001.Google Scholar
  75. 75.
    Y. C. C.; X. G.; H. L.; J. H. L.; Y. S.; T. Y. Wong, “Automatic detection of cortical and PSC cataracts using texture and intensity analysis on retro-illumination lens images.”.Google Scholar
  76. 76.
    A. U. Patwari, “Detection, Categorization, and Assessment of Eye Cataracts Using Digital Image Processing,” no. June, pp. 1–5, 2011.Google Scholar
  77. 77.
    J. Zheng, L. Guo, L. Peng, J. Li, J. Yang, and Q. Liang, “Fundus image based cataract classification,” IST 2014 - 2014 IEEE Int. Conf. Imaging Syst. Tech. Proc., pp. 90–94, 2014.Google Scholar
  78. 78.
    S. Kolhe and S. K. Guru, “Remote Automated Cataract Detection System Based on Fundus Images,” pp. 10334–10341, 2016.Google Scholar
  79. 79.
    L. Zhang et al., “Automatic cataract detection and grading using Deep Convolutional Neural Network,” Proc. 2017 IEEE 14th Int. Conf. Networking, Sens. Control. ICNSC 2017, pp. 60–65, 2017.Google Scholar
  80. 80.
    S. Pathak and B. Kumar, “A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application,” Electronics, vol. 5, no. 3, p. 57, 2016.CrossRefGoogle Scholar
  81. 81.
    O. Zisimopoulos et al., “Can surgical simulation be used to train detection and classification of neural networks?,” Healthc. Technol. Lett., vol. 4, no. 5, pp. 216–222, 2017.CrossRefGoogle Scholar
  82. 82.
    M. Caixinha, J. Amaro, M. Santos, F. Perdigão, M. Gomes, and J. Santos, “In-Vivo Automatic Nuclear Cataract Detection and Classification in an Animal Model by Ultrasounds,” IEEE Trans. Biomed. Eng., vol. 63, no. 11, pp. 2326–2335, 2016.CrossRefGoogle Scholar
  83. 83.
    R. Gupta, V. Gupta, and B. Kumar, “A novel method for automatic retinal detachment detection and estimation using ocular ultrasound image,” 2018.Google Scholar
  84. 84.
    H. Heimann, “[Retinal detachment].,” Klin. Monatsbl{ä}tter f{ü}r Augenheilkd., vol. 229, no. 6, pp. 651–670, 2012.Google Scholar
  85. 85.
    G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol., vol. 137, no. 1, pp. 156–169, 2004.CrossRefGoogle Scholar
  86. 86.
    C. H. Damianidis, D. Konstantinou, V. Kyriakou, M. Arvaniti, and N. Kotziamani, “Magnetic Resonance Imaging and Ultrasonographic Evaluation of Retinal Detachment in Orbital Uveal Melanomas,” pp. 329–338, 2010.Google Scholar
  87. 87.
    D. J. Coleman and R. L. Jack, “B-Scan Ultrasonography in Diagnosis and Management of Retinal Detachments,” Arch. Ophthalmol., vol. 90, no. 1, pp. 29–34, 1973.CrossRefGoogle Scholar
  88. 88.
    M. S. Blumenkranz and S. F. Byrne, “Standardized Echography (Ultrasonography) for the Detection and Characterization of Retinal Detachment,” Ophthalmology, vol. 89, no. 7, pp. 821–831, 1982.CrossRefGoogle Scholar
  89. 89.
    B. Rutledge et al., “Quantitative Assessment of Macular Edema With Optical Coherence Tomography,” 2015.Google Scholar
  90. 90.
    P. Romero-aroca, “Managing diabetic macular edema: The leading cause of diabetes blindness,” vol. 2, no. 6, pp. 98–104, 2011.Google Scholar
  91. 91.
    G. Virgili, F. Menchini, V. Murro, E. Peluso, F. Rosa, and G. Casazza, “Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy (Review),” no. 7, 2011.Google Scholar
  92. 92.
    D. Marin, M. E. Gegundez-Arias, A. Suero, and J. M. Bravo, “Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images,” Comput. Methods Programs Biomed., vol. 118, no. 2, pp. 173–185, 2015.CrossRefGoogle Scholar
  93. 93.
    R. Supriyanti, H. Habe, M. Kidode, and S. Nagata, “Compact cataract screening system: Design and practical data acquisition,” Int. Conf. Instrumentation, Commun. Inf. Technol. Biomed. Eng. 2009, ICICI-BME 2009, 2009.Google Scholar
  94. 94.
    C. Science, E. V. Academy, and T. Thrissur-, “Automatic cataract detection and classification systems: A survey,” vol. 3, no. March 2015, pp. 28–36, 2014.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ECE, Motilal Nehru NIT AllahabadPrayagrajIndia

Personalised recommendations