Advertisement

Image Processing Based Automated Glaucoma Detection Techniques and Role of De-Noising: A Technical Survey

  • Sima Sahu
  • Harsh Vikram Singh
  • Basant Kumar
  • Amit Kumar Singh
  • Prabhat Kumar
Chapter

Abstract

This chapter presents a detailed study of the image processing steps to identify glaucoma including the key role of the de-noising in the detection of Glaucoma. De-noising plays an important role in the area of medical imaging. One of the major applications of image processing is detection of retinal diseases. Further, important diagnostic parameters to detect glaucoma are discussed in detail. Several techniques with different diagnostic parameters are used to detect glaucoma. Image acquisition is the first step in this detection process. Existing noise in the medical image may degrade the accuracy of the detection. Therefore a preprocessing step is highly required before the commencement of actual processing. In general, optical coherence tomography (OCT) and Ultrasound retinal image are corrupted by speckle noise. The speckle noise removal techniques are reviewed. The popular de-speckling approaches are classified into different groups and a brief overview is provided. The application of these de-noising methods outperforms in diagnosing the progression of glaucoma.

Keywords

Glaucoma OCT image Ultrasound image De-speckling Diagnostic parameters 

Notes

Acknowledgement

This chapter is a part of my Ph.D. thesis which has been submitted to AKTU, Lucknow.

References

  1. 1.
    Quigley, H. A., & Broman, A. T. (2006). The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology, 90(3), 262-267.Google Scholar
  2. 2.
    Bock, R., Meier, J., Nyul, L. G., Hornegger, J., & Michelson, G. (2010). Glaucoma risk index: automated glaucoma detection from color fundus images. Medical image analysis, 14(3), 471-481.Google Scholar
  3. 3.
    Garcia-Feijoo, J., Mendez-Hernandez, C. De la Casa, J. M. M., Saenz-Frances, F., Sanchez-Jean, R., & Garcia-Sanchez, J. (2016). Ultrasound Biomicroscopy in Glaucoma. In Glaucoma Imaging (pp. 97-121), Springer International Publishing.Google Scholar
  4. 4.
    Huang, M. L., & Chen, H. Y. (2005). Development and comparison of automated classifiers for glaucoma diagnosis using stratus optical coherence tomography. Investigative Ophthalmology and Visual Science, 46(11), 4121-4129.Google Scholar
  5. 5.
    Radhakrishan, S., Goldsmith, J., Huang, D., Westphal, V., Dueker, D. K., Rollins, A. M., Izatt, J. A., & Smith, S. D. (2005). Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of Narrow Anterior Chamber Angles. Archives of Ophthalmology, 123(8), 1053-1059.Google Scholar
  6. 6.
    Swindale, N.V., Stjepanovic, G., Chin, A., & Mikelberg, F. S. (2000). Automated analysis of normal and glaucomatous optic nerve head topography images. Investigative ophthalmology and visual science, 41(7), 1730-1742.Google Scholar
  7. 7.
    Sivalingam, E. (1995). Glaucoma: an overview’. Journal of ophthalmic. Nursing & technology, 15(1), 15-18.Google Scholar
  8. 8.
    Budenz, D. L., Anderson, D. r., Varma, R., Schuman, J., Cantor, L., Savell, J., …& Tielsch, J. (2007). Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology, 114(6), 1046-1052.Google Scholar
  9. 9.
    Yu, W., Ma, Y., Zheng, L., & Liu, K. (2016). Research of Improved Adaptive Median Filter Algorithm. In Proceedings of the 2015 international conference on Electrical and Information Technologies for Rail Transportation (pp. 27-34), Springer, Berlin, Heidelberg.Google Scholar
  10. 10.
    Cheng, J., Duan, L., Wong, D. W. K., Tao, D., Akiba, M., & Liu, J. (2014, September). Speckle reduction in optical coherence tomography by image registration and matrix completion. In International Conference on Medical Image Computing and Computer- Assisted Intervention (pp.162-169), Springer International Publishing.Google Scholar
  11. 11.
    Benzarti, F., & Amiri, H. (2013). Speckle noise reduction in medical ultrasound images. arXiv preprint arXiv:1305.1344.Google Scholar
  12. 12.
    Meier, J., Bock, R., Michelson, G., Nyul, L. G.,& Hornegger, J. (2007, August). Effects of preprocessing eye fundus images on appearance based glaucoma classification. In International Conference on Computer Analysis of Images and Patterns (pp. 165-172). Springer Berlin Heidelberg.Google Scholar
  13. 13.
    Ishikawa, H., Stein, D. M., Wollstein, G., Beaton, S., Fujimoto, J.G., & Schuman, J.S. (2005). Macular segmentation with optical coherence tomography. Investigative ophthalmology & visual science, 46(6), 2012-2017.Google Scholar
  14. 14.
    Morales, S., Naranjo, V., Angulo, J., & Alcaniz, M. (2013). Automatic detection of optic disc based on PCA and mathematical morphology. IEEE transactions on medical Imaging, 32(4), 786-796.Google Scholar
  15. 15.
    Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N. M., Tao, D., Cheng, C. Y., Aung, T., & Wong, T. Y. (2013). Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transaction on Medical Imaging, 32(6), 1019-1032.Google Scholar
  16. 16.
    Joshi, G. D., Sivaswami, J., & Krishnadas, S.R. (2011). Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Transaction on Medical Imaging, 30(6), 1192-1205.Google Scholar
  17. 17.
    Wong, D.W.K., Liu, J., Lim, J. H., Jia, X., Yin, F., Li, H., & Wong, T. Y. (2008, August). Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. In Engineering in Medicine and Biology Society, 2008. 30th Annual International Conference of the IEEE (pp. 2266–2269), IEEE.Google Scholar
  18. 18.
    Hatanaka, Y., Noudo, A., Maramatsu, C., Sawada, A., Hara, T., Yamamoto, T., & Fujita, H. (2011, August). Automatic measurement of cup to disc ratio based on line profile analysis in retinal images. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 3387-3390), IEEE.Google Scholar
  19. 19.
    Khan, F., Khan, S.A., Yasin, U.U., ul Haq, I., & Qamar, U. (2013, October). Detection of glaucoma using retinal fundus images. In Biomedical Engineering International Conference (BMEiCON), 2013 6th (pp. 1-5), IEEE.Google Scholar
  20. 20.
    Ahmad, H., Yamin, A., Shakeel, A., Gillani, S. O., & Ansari, U. (2014, April). Detection of glaucoma using retinal fundus images. In Robotics and Emerging Allied Technologies in engineering (iCREATE), 2014 International Conferences on (pp. 321-324), IEEE.Google Scholar
  21. 21.
    Turpin, A., Frank, E., Hall, M., Witten, I. H., & Johnson, C. A. (2001, April). Determining progression in glaucoma using visual fields. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp.136-147), Springer, Berlin, Heidelberg.Google Scholar
  22. 22.
    Nayak, J., Acharya, R., Bhat, P. S., Shetty, N., & Lim, T. C. (2009). Automated diagnosis of glaucoma using digital fundus images. Journals of medical systems, 33(5), 337-346.Google Scholar
  23. 23.
    Huang, M. L., Chen, H. Y., & Huang, J. J. (2007). Glaucoma detection using adaptive neuro-fuzzy inference system. Expert systems with applications, 32(2), 458-468.Google Scholar
  24. 24.
    Bock, R., Meier, J., Michelson, G., Nyul, L., & Hornegger, J. (2007). Classifying glaucoma with image-based features from fundus photographs. Pattern Recognition, 355-364.Google Scholar
  25. 25.
    Nyul, L. G. (2009, October). Retinal Image Analysis for Automated Glaucoma Risk Evaluation. In 6th International Symposium on Multispectral Image Processing and Pattern Recognition (pp. 74971C-74971C), International Society for optics and photonics.Google Scholar
  26. 26.
    Ferreras, A., Pajarin, A. B., Polo, V., Larrosa, J. M., Pablo, L.E., & Honrubia, F.M. (2007). Diagnostic ability of Heidelberg Retinal Tomograph 3 Classifications: glaucoma probability score versus Moorfields regression analysis. Ophthalmology, 114 (11), 1981-1987.Google Scholar
  27. 27.
    Atlas, L., Li, Q., & Thompson, J. (2004, May). Homomorphic modulation spectra. In Acoustics, Speech, and Signal Processing, 2004, Proceedings. (ICASSP’04), IEEE International Conference on (Vol. 2, pp.761-764), IEEE.Google Scholar
  28. 28.
    Desjardins, A. E., Vakoc, B.J., Oh, W. Y., Motaghiannezam, S. M. R., Tearney, G. J., & Bouma, B.E. (2007). Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction. Optics Express, 15(10), 6200-6209.Google Scholar
  29. 29.
    Iftimia, N., Bouma, B. E., & Tearney, G. J. (2003). Speckle reduction in optical coherence tomography by path length encoded angular compounding. Journal of Biomedical Optics, 8(2), 260-263.Google Scholar
  30. 30.
    Jorgensen, T. M., Thrane, L., Mogensen, M., Pedersen, F., & Andersen, P. E. (2007, June). Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method. In European Conference on Biomedical Optics (p. 6627-22), Optical Society of America.Google Scholar
  31. 31.
    Kim, J., Miller, D. T., Kim, E., Oh, S., Oh, J., & Milner, T. E. (2005). Optical Coherence Tomography Speckle Reduction by a Partially Spatially Coherent Source. Journal of Biomedical Optics, 10(6), 064034-064034.Google Scholar
  32. 32.
    Kobayashi, M., Hanafusa, H., Takada, K., & Noda, J. (1991). Polarization-independent interferometric optical-time-domain reflectometer. Journal of Lightwave Technology, 9(5), 623-628.Google Scholar
  33. 33.
    Pircher, M., Go, E., Leitgeb, R., Fercher, A. F., & Hitzenberger, C. K. (2003). Speckle reduction in optical coherence tomography by frequency compounding. Journal of Biomedical Optics, 8(3), 565-569.Google Scholar
  34. 34.
    Loupas, T., McDicken, W. N., & Allan, P.L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasound images. IEEE Transactions on Circuits and Systems, 36(1), 129-135.Google Scholar
  35. 35.
    Rogowska, J., & Brezinski, M. E. (2000). Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE Transaction on Medical Imaging, 19(12), 1261-1266.Google Scholar
  36. 36.
    Aja, S., Alberola, C., & Ruiz, A. (2001). Fuzzy Anisotropic diffusion for speckle filtering. In Acoustics, Speech, and Signal Processing Proceedings, 2001.Proceedings, (ICASSP’01), 2001 IEEE International Conference on (Vol. 2, pp.1261-1264), IEEE.Google Scholar
  37. 37.
    Ramos-Llorden, G., Vegas-Sanchez-Ferrero, G., Martin-Fernandez, M., Alberola-Lopez, C., & Aja-Fernandez, S. (2015). Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Transaction on Image Processing, 24(1), 345-358.Google Scholar
  38. 38.
    Anantrasirichai, N. Nicholson, L., Morgan, J. E., Erchova, I., Mortlock, K., North, R. V., Albon, J., & Achim, A. (2014). Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography. Computerized Medical Imaging and Graphics, 38(6), 526-539.Google Scholar
  39. 39.
    Yang, J., Fan, J., Ai, D., Wang, X., Zheng, Y., Tang, S., & Wang, Y. (2016). Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing, 195, 88-95.Google Scholar
  40. 40.
    Habib, W., Sarwar, T., Siddiqui, A. M., & Touqir, I. (2016). Wavelet denoising of multiframe optical coherence tomography data using similarity measures. IET Image Processing, 11(1), 64-79.Google Scholar
  41. 41.
    Gupta, A., Tripathi, A., & Bhateja, V. (2013). Despeckling of SAR images in contourlet domain using a new adaptive thresholding. In Advance Computing Conference (IACC), 2013 IEEE 3rd International (pp.1257-1261), IEEE.Google Scholar
  42. 42.
    Xu, J., Ou, H., Lam, E. Y., Chui, P. C., & Wong, K. K. Y. (2013). Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage. Optic Letters, 38(15), 2900-2903.Google Scholar
  43. 43.
    Rabbani, H., Vafadust, M., Abolmaesumi, P., & Gazor, S. (2008). Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Transactions on Biomedical Engineering, 55(9), 2152-2160.Google Scholar
  44. 44.
    Sudeep, P.V., Niwas, S. I., Palanisamy, P., Rajan, J., Xiaojun, Y., Wang, X., Luo, Y., & Liu, L. (2016). Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering. Computers in Biology and Medicine, 71, 97-107.Google Scholar
  45. 45.
    Sudha, S., Suresh, G. R., & Sukanesh, R. (2009). Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. International Journal of Computer Theory and Engineering, 1(1), 1793-8201.Google Scholar
  46. 46.
    Gupta, S., Chauhan, R. C., & Sexana, S. C. (2004). Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical and Biological Engineering and Computing, 42(2), 189-192.Google Scholar
  47. 47.
    Fablet, R., Augustin, J.M., & Isar, A. (2005, June). Speckle Denoising Using a Variational Multi-wavelet Approach. In Oceans 2005-Europe (Vol. 1, pp. 539-544).IEEE.Google Scholar
  48. 48.
    Andria, G., Attivissimo, F., Lanzolla, A. M., & Savino, M. (2013). A suitable threshold for speckle reduction in ultrasound images. IEEE Transaction on Instrumentation and Measurement, 62(8), 2270-2279.Google Scholar
  49. 49.
    Bhuiyan, M. I. H., Ahmad, M. O., & Swamy, M. N. S. (2009). Spatially adaptive thresholding in wavelet domain for despeckling of ultrasound images. IET Image Processing, 3(3), 147-162.Google Scholar
  50. 50.
    Bibalan, M. H., & Amindavar, H. (2016). Non-Gaussian amplitude PDF modeling of ultrasound images based on a novel generalized Cauchy-Rayleigh mixture. EURASIP Journal on Image and video Processing, 2016(1), 48.Google Scholar
  51. 51.
    Jafari, S., & Ghofrani, S. (2017). Using Heavy-Tailed Levy model in non subsampled shearlet transform domain for ultrasound image despeckling, Jounal of Advances in Computer Research. 8(2), 53-66.Google Scholar
  52. 52.
    Fernadez, D. C., Salinas, H. M., & Puliafito, C. A. (2005). Automated detection of retinal layer structures on optical coherence tomography images. Optic Express, 13(25), 10200-10216.Google Scholar
  53. 53.
    Garvin, M. K., Abramoff, M. D., Kardon, R., Russell, S. R., Wu, X., & Sonka, M. (2008). Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Transaction on Medical Imaging, 27(10), 1495-1505.Google Scholar
  54. 54.
    Ghafaryasl, B., Baart, R., de Boer, J. F., Van Vliet, L.J., & Vermeer, K. A. (2017, February). Automatic estimation of retinal nerve fiber bundle orientation in SD-OCT images using a structure-oriented smoothing filter. In SPIE medical Imaging (pp. 101330C-101330C). International Society for Optics and Photonics.Google Scholar
  55. 55.
    Yu, Y., & Acton, S. T. (2002). Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing. 11(11), 1260-1270.Google Scholar
  56. 56.
    Sahu, S., Singh, H. V., Kumar, B., & Singh, A. K. (2018). A Bayesian Multiresolution Approach for Noise Removal in Medical Magnetic Resonance Images. Journal of Intelligent Systems. https://doi.org/10.1515/jisys-2017-0402
  57. 57.
    Sahu, S., Singh, H.V., Kumar, B. and Singh, A.K., (2018). Statistical Modeling and Gaussianization Procedure based de-speckling algorithm for Retinal OCT images, Journal of Ambient Intelligence and Humanized Computing (AIHC), 1-14.Google Scholar
  58. 58.
    Sahu, S., Singh, H. V., Kumar, B., & Singh, A. K. (2019). De-noising of ultrasound image using Bayesian approached heavy-tailed Cauchy distribution. Multimedia Tools and Applications, 78(4), 4089–4106.Google Scholar
  59. 59.
    Sahu, S., Singh, H.V. and Kumar, B., 2017, December. A heavy-tailed levy distribution for despeckling ultrasound image. Fourth IEEE International Conference on Image Information Processing (ICIIP), Himachal Pradesh, India, December 21-23, 2017, pp. 1-5.  https://doi.org/10.1109/ICIIP.2017.8313674
  60. 60.
    Sonali, Sahu, S., Singh, A.K., Ghrera, S.P. and Elhoseny, M., 2018. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Optics & Laser Technology, an International Journal of Elsevier.  https://doi.org/10.1016/j.optlastec.2018.06.061 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sima Sahu
    • 1
  • Harsh Vikram Singh
    • 2
  • Basant Kumar
    • 3
  • Amit Kumar Singh
    • 4
  • Prabhat Kumar
    • 4
  1. 1.Dr. A. P. J. Abdul Kalam Technical UniversityLucknowIndia
  2. 2.Department of ElectronicsKamla Nehru Institute of Technology (KNIT)SultanpurIndia
  3. 3.Department of ECEMotilal Nehru NIT, AllahabadPrayagrajIndia
  4. 4.Department of Computer Science and EngineeringNIT PatnaPatnaIndia

Personalised recommendations