Finding Balanced Bicliques in Bipartite Graphs Using Variable Neighborhood Search

  • Juan David Quintana
  • Jesús Sánchez-OroEmail author
  • Abraham Duarte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11328)


The Maximum Balanced Biclique Problem (MBBP) consists of identifying a complete bipartite graph, or biclique, of maximum size within an input bipartite graph. This combinatorial optimization problem is solvable in polynomial time when the balance constraint is removed. However, it becomes \(\mathcal {NP}\)–hard when the induced subgraph is required to have the same number of vertices in each layer. Biclique graphs have been proven to be useful in several real-life applications, most of them in the field of biology, and the MBBP in particular can be applied in the design of programmable logic arrays or nanoelectronic systems. Most of the approaches found in literature for this problem are heuristic algorithms based on the idea of removing vertices from the input graph until a feasible solution is obtained; and more recently in the state of the art an evolutionary algorithm (MA/SM) has been proposed. As stated in previous works it is difficult to propose an effective local search method for this problem. Therefore, we propose the use of Reduced Variable Neighborhood Search (RVNS). This methodology is based on a random exploration of the considered neighborhoods and it does not require a local search.


Biclique Reduced VNS Bipartite 


  1. 1.
    Al-Yamani, A.A., Ramsundar, S., Pradhan, D.K.: A defect tolerance scheme for nanotechnology circuits. IEEE Trans. Circuits Syst. 54–I(11), 2402–2409 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity lemma. J. Algorithms 16(1), 80–109 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baker, E.J., et al.: Ontological discovery environment: a system for integrating gene-phenotype associations. Genomics 94(6), 377–387 (2009)CrossRefGoogle Scholar
  4. 4.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th ISMB, pp. 93–103. AAAI Press (2000)Google Scholar
  5. 5.
    Chesler, E.J., Langston, M.A.: Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data. In: Eskin, E., Ideker, T., Raphael, B., Workman, C. (eds.) RRG/RSB -2005. LNCS, vol. 4023, pp. 150–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and multipartite clique problems. J. Algorithms 41(2), 388–403 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Feige, U., Kogan, S.: Hardness of approximation of the balanced complete bipartite subgraph problem. Technical report (2004)Google Scholar
  8. 8.
    Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Hansen, P., Mladenović, N.: Variable Neighborhood Search, pp. 313–337. Springer, Boston (2014)zbMATHGoogle Scholar
  11. 11.
    Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 13(3), 502–524 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mushlin, R.A., Kershenbaum, A., Gallagher, S.T., Rebbeck, T.R.: A graph-theoretical approach for pattern discovery in epidemiological research. IBM Syst. J. 46(1), 135–150 (2007)CrossRefGoogle Scholar
  13. 13.
    Ravi, S.S., Lloyd, E.L.: The complexity of near-optimal programmable logic array folding. SIAM J. Comput. 17(4), 696–710 (1988)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sanderson, M.J., Driskell, A.C., Ree, R.H., Eulenstein, O., Langley, S.: Obtaining maximal concatenated phylogenetic data sets from large sequence databases. Mol. Biol. Evol. 20(7), 1036–1042 (2003)CrossRefGoogle Scholar
  15. 15.
    Tahoori, M.B.: Application-independent defect tolerance of reconfigurable nanoarchitectures. JETC 2(3), 197–218 (2006)CrossRefGoogle Scholar
  16. 16.
    Tahoori, M.B.: Low-overhead defect tolerance in crossbar nanoarchitectures. JETC 5(2), 11 (2009)CrossRefGoogle Scholar
  17. 17.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. In: ISMB, pp. 136–144 (2002)Google Scholar
  18. 18.
    Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Franklin, M.J., Moon, B., Ailamaki, A. (eds.) SIGMOD Conference, pp. 394–405. ACM (2002)Google Scholar
  19. 19.
    Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yuan, B., Li, B.: A low time complexity defect-tolerance algorithm for nanoelectronic crossbar. In: International Conference on Information Science and Technology, pp. 143–148 (2011)Google Scholar
  21. 21.
    Yuan, B., Li, B.: A fast extraction algorithm for defect-free subcrossbar in nanoelectronic crossbar. ACM J. Emerg. Technol. Comput. Syst. (JETC) 10(3), 25 (2014)MathSciNetGoogle Scholar
  22. 22.
    Yuan, B., Li, B., Chen, H., Yao, X.: A new evolutionary algorithm with structure mutation for the maximum balanced biclique problem. IEEE Trans. Cybern. 45(5), 1040–1053 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer SciencesUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations