Advertisement

Results of Non-seismic Exploration Methods in the Habana–Matanzas Region, Cuba

  • Manuel Enrique Pardo EcharteEmail author
Chapter
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

A version of the geo-structural mapping of the study region, based on the gravitational-magnetic data and the mapping of sectors of gasopetroliferous interest, linked to the conventional oil of the Placetas Tectonic-Stratigraphic Unit, is offered, based on the presence of a complex of indicator anomalies. The source materials are: the gravimetric (Bouguer reduction 2.3 t/m3) and aeromagnetic (reduced to pole) maps at a scale of 1:50,000; airborne gamma spectrometric maps (channels K, Th and U (Ra)) at scale 1:100,000; the Digital Elevation Model (90 × 90 m) and; a result map of remote sensing for the search of perspective gasopetroliferous sectors in the region of Guanabo-Seboruco. The processing consisted in the regional-residual separation of the gravimetric and morphometric fields, the calculation of the derivative of the magnetic field inclination and of the ratio of the K/Th spectrometry channels. The indicator anomalous complex considers the following attributes: low-amplitude local gravimetric maximums; minimum K/Th ratio and local maximums of U (Ra) at its periphery; local maximums of residual relief and remote sensing anomalies. The result is a complementary non-seismic information, essential for the necessary geological–geophysical–geochemical–morphometric integration of the territory. As a result of the geo-structural mapping from the gravi-magnetic data, a wide distribution of the Zaza Terrain (volcanic + ophiolites) can be observed in the study region. The main structural depressions are concentrated along a latitudinal strip that covers the following locations (from east to west): Southwest of Matanzas Bay, Ceiba Mocha, Aguacate, Bainoa, Tapaste, Cuatro Caminos, Managua, and Santiago de las Vegas. Based on estimates of the reduced at the pole magnetic field, the depth at the top of a target located to the west of Bainoa, within this strip, is 1350–1450 m, which gives an idea of its sedimentary thickness. The results of the integrated prospective cartography consider, in a first level of perspective, three localities (Boca de Jaruco, Jibacoa del Norte and Este de Aguacate) where all the studied anomalies (attributes), with the exception of the morphometric ones, appear. In a second level of perspective, the localities that correspond to the combination of two types of different anomalies (11 localities) are considered.

Keywords

Non-seismic exploration Gravimetry Airborne magnetics Airborne gamma spectrometry Morphometry Remote sensing Geological-structural mapping Integrated prospective mapping Unconventional methods of hydrocarbon exploration 

References

  1. Colectivo de Autores (2009) Expediente Único del Proyecto 6004, “Exploración en la Franja Norte Petrolera Cubana”. Inédito. Archivo, Centro de Investigaciones del Petróleo (Ceinpet), La Habana, CubaGoogle Scholar
  2. Colectivo de Autores (2010) Mapa Geológico Digital de la República de Cuba a escala 1:100000. Inédito. Instituto de Geología y Paleontología, Servicio Geológico de Cuba, La HabanaGoogle Scholar
  3. Fairhead JD, Ahmed S, Williams SE (2009) Tilt-depth: a simple depth-estimation method using first order magnetic derivatives. Search and Discovery Article #40390 (Adapted from poster presentation at AAPG International Conference and Exhibition, Cape Town, South Africa, October 26–29, 2008)Google Scholar
  4. Jiménez de la Fuente L (2017) Resultados de la Teledetección (TDT) para la búsqueda de sectores gasopetrolíferos perspectivos en la región de Guanabo-Seboruco. Apuntes metodológicos. Inédito. Ceinpet, La Habana, 13 pGoogle Scholar
  5. Mondelo F, Sánchez Cruz R y otros (2011) Mapas geofísicos regionales de gravimetría, magnetometría, intensidad y espectrometría gamma de la República de Cuba, escalas 1:2,000,000 hasta 1:50,000. Inédito. IGP, La Habana, 278 pGoogle Scholar
  6. Pardo Echarte ME, Rodríguez Morán O (2016) Unconventional methods for oil & gas exploration in Cuba. Springer Briefs in Earth System Sciences.  https://doi.org/10.1007/978-3-319-28017-2CrossRefGoogle Scholar
  7. Pardo Echarte ME (2016) Generalización Petrofísica de la Provincia Matanzas. Inédito. Centro de Investigaciones del Petróleo, La Habana, 5 pGoogle Scholar
  8. Price LC (1985) A critical overview of and proposed working model for hydrocarbon microseepage. US Department of the Interior Geological Survey. Open-File Report 85-271Google Scholar
  9. Sánchez Cruz R, Mondelo F y otros (2015) Mapas Morfométricos de la República de Cuba para las escalas 1: 1,000,000–1:50,000 como apoyo a la Interpretación Geofísica. Memorias VI Convención Cubana de Ciencias de la Tierra, VIII Congreso Cubano de Geofísica. Fuente: http://www.cgiar-csi.org/data/srtm-90m-digital-elevation
  10. Saunders DF, Burson KR, Thompson CK (1999) Model for hydrocarbon microseepage and related near-surface alterations. AAPG Bull 83(1):170–185Google Scholar
  11. Schumacher D (1996) Hydrocarbon-induced alteration of soils and sediments. In: Schumacher D, Abrams MA (eds) Hydrocarbon migration and its near-surface expression. AAPG Memoir 66, pp 71–89Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Investigaciones del Petróleo (Ceinpet)El CerroCuba

Personalised recommendations