Skip to main content

Management Considerations: Juvenile Dermatomyositis

  • Chapter
  • First Online:
Managing Myositis
  • 933 Accesses

Abstract

Treatment recommendations for juvenile dermatomyositis (JDM) mostly rely on experience, both personal and shared, as well as that published in the literature, most often case reports and small case series. Despite the lack of any randomized trials, glucocorticoids remain the mainstay of therapy for JDM. However, the side effect profile of long-term glucocorticoids is undesirable, and steroid-sparing immunosuppressive and biologic therapies are necessary. Early aggressive intervention is important in limiting JDM-related morbidity, and collaborative research approaches including the Paediatric Rheumatology International Trials Organization (PRINTO), Childhood Arthritis and Rheumatology Research Alliance (CARRA), and International Myositis Assessment and Clinical Studies Group (IMACS) are essential. These organizations utilize prospectively collected data for use in comparative research. A better understanding of the pathogenesis of JDM is driving the search for improved therapies for JDM. Autologous stem cell transplantation (aSCT) is reserved for those patients with severe refractory disease and has shown promise in re-establishing immune tolerance in the small number of JDM patients treated to date. Exercise therapy is safe and includes aerobic and resistance training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ravelli A, Trail L, Ferrari C, et al. Long-term outcome and prognostic factors of juvenile dermatomyositis: a multinational, multicenter study of 490 patients. Arthritis Care Res. 2010;62(1):63–72.

    Article  Google Scholar 

  2. Huber AM, Lang B, LeBlanc CM, et al. Medium- and long-term functional outcomes in a multicenter cohort of children with juvenile dermatomyositis. Arthritis Rheum. 2000;43(3):541–9.

    Article  CAS  PubMed  Google Scholar 

  3. Sanner H, Gran JT, Sjastaad I, Flato B. Cumulative organ damage and prognostic factors in juvenile dermatomyositis: a cross-sectional study median 16.8 years after symptom onset. Rheumatology. 2009;48:1541–7.

    Article  PubMed  Google Scholar 

  4. Rider LG, Koziel D, Giannini EH, et al. Validation of manual muscle testing and a subset of eight muscles for adult and juvenile idiopathic inflammatory myopathies. Arthritis Care Res. 2010;62:465–72.

    Article  Google Scholar 

  5. Fisler RE, Liang MG, Fuhlbrigge RC, et al. Aggressive treatment of juvenile dermatomyositis results in improved outcome and decreased incidence of calcinosis. J Am Acad Dermatol. 2002;47:505–11.

    Article  PubMed  Google Scholar 

  6. Oddis CV, Rider LG, Reed AM, et al. International consensus guidelines for trials of therapies in the idiopathic inflammatory myopathies. Arthritis Rheum. 2005;52:2607–15.

    Article  PubMed  Google Scholar 

  7. Rider LG, Lachenbruch PA, Monroe JB, et al. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index. Arthritis Rheum. 2009;60(11):3425–35.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huber AM, Giannini EH, Bowyer SW, et al. Protocols for the initial treatment of moderately severe juvenile dermatomyositis: results of a children’s arthritis and rheumatology research Alliance consensus conference. Arthritis Care Res. 2010;62:219–25.

    Article  CAS  Google Scholar 

  9. Ruperto N, Pistorio A, Ravelli A, et al. The pediatric rheumatology international trials organization provisional criteria for the evaluation of response to therapy in juvenile dermatomyositis. Arthritis Care Res. 2010;62:1533–41.

    Article  Google Scholar 

  10. Rider LG, Katz JD, Jones OY. Developments in the classification and treatment of the juvenile idiopathic inflammatory myopathies. Rheum Dis Clin N Am. 2013;39:877–904.

    Article  Google Scholar 

  11. Rouster Stevens KA, Morgan GA, Wang D, Pachman LM. Mycophenolate mofetil: a possible therapeutic agent for children with dermatomyositis. Arthritis Care Res. 2010;62(10):1446–51.

    Article  Google Scholar 

  12. Dagher R, Desjonqueres M, Duquesne A, et al. Mycophenolate mofetil in juvenile dermatomyositis: a case series. Rheumatol Int. 2012;32(3):711–6.

    Article  PubMed  Google Scholar 

  13. Guseinova D, Consolaro A, Trial L, et al. Comparison of clinical features and drug therapies among European and Latin American patients with juvenile dermatomyositis. Clin Exp Rheumatol. 2011;29:117–24.

    PubMed  Google Scholar 

  14. Yamada A, Oshima Y, Omata N, Yasutomi M, Mayumi M. Steroid-sparing effect of tacrolimus in a patient with juvenile dermatomyositis presenting poor bioavailability of cyclosporine A. Eur J Pediatr. 2004;163(9):561–2.

    Article  PubMed  Google Scholar 

  15. Riley P, Maillard SM, Wedderburn LR, et al. Intravenous cyclophosphamide pulse therapy in juvenile dermatomyositis. A review of efficacy and safety. Rheumatology. 2004;43(4):491–6.

    Article  CAS  PubMed  Google Scholar 

  16. Riley P, McCann L, Maillard SM, et al. Effectiveness of infliximab in the treatment of refractory juvenile dermatomyositis with calcinosis. Rheumatology. 2008;47(6):877–80.

    Article  CAS  PubMed  Google Scholar 

  17. Dastmalchi M, Grundtman C, Alexanderson H, et al. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann Rheum Dis. 2008;67:1670–7.

    Article  CAS  PubMed  Google Scholar 

  18. Amato A. The Muscle Study Group. A randomized pilot of etanercept in dermatomyositis. Ann Neurol. 2011;70(3):427–36.

    Article  CAS  Google Scholar 

  19. Arabshahi B, Silverman RA, Jones OY, Rider LG. Abatacept and sodium thiosulfate for the treatment of recalcitrant dermatomyositis complicated by ulceration and calcinosis. J Pediatr. 2012;160(3):520–2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kerola AM, Kauppi MJ. Abatacept as successful therapy for myositis—a case-based review. Clin Rheumatol. 2015;34:609–12.

    Article  PubMed  Google Scholar 

  21. Bader-Meunier B, Dealuwe H, Barnerias C, et al. Safety and efficacy of rituximab in severe juvenile dermatomyositis: results from 9 patients from the French Autoimmunity and Rituximab registry. J Rheumatol. 2011;38(7):1436–40.

    Article  CAS  PubMed  Google Scholar 

  22. Oddis CV, Reed AM, Aggarwal R, et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 2013;65(2):314–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagaraju K, Ghimbovschi S, Rayavarapu S, et al. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients. Rheumatology. 2016;55(9):1673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Venalis P, Lundberg IE. Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy. Rheumatology. 2014;53(3):397–405.

    Article  CAS  PubMed  Google Scholar 

  25. Tansley SL, McHugh NJ. Serological subsets of juvenile idiopathic inflammatory myopathies—an update. Expert Rev Clin Immunol. 2016;12(4):427–37.

    Article  CAS  PubMed  Google Scholar 

  26. Huber AM, Kim S, Reed AR, et al. Childhood Arthritis and Rheumatology Research Alliance consensus clinical treatment plans for juvenile dermatomyositis with persistent skin rash. J Rheumatol. 2017;44(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  27. Huber AM, Robinson AB, Reed AM, et al. Consensus treatments for moderate juvenile dermatomyositis: beyond the first two months. Results of the second Childhood Arthritis and Rheumatology Research Alliance consensus conference. Arthritis Care Res. 2012;64(4):546–53.

    Article  Google Scholar 

  28. Kim S, Kahn P, Robinson AB, et al. Childhood Arthritis and Rheumatology Research Alliance consensus clinical treatment plans for juvenile dermatomyositis with skin predominant disease. Pediatr Rheumatol Online. 2017;15(1):1. https://doi.org/10.1186/s12969.

    Article  Google Scholar 

  29. Stringer E, Bohnsack J, Bowyer SL, Griffin TA, et al. Treatment approaches to juvenile dermatomyositis across North America: the Childhood Arthritis and Rheumatology Research Alliance (CARRA) JDM treatment survey. J Rheumatol. 2010;37(9):1953–61.

    Article  CAS  PubMed  Google Scholar 

  30. Ramanan AV, Campbell-Webster N, Ota S, et al. The effectiveness of treating juvenile dermatomyositis with methotrexate and aggressively tapered corticosteroids. Arthritis Rheum. 2005;52(11):3570–8.

    Article  CAS  PubMed  Google Scholar 

  31. Dalakas MC. Therapeutic advances and future prospects in immune-mediated inflammatory myopathies. Ther Adv Neurol Disord. 2008;1(3):157–66.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Levy DM, Bingham CA, Kahn PJ, Eichenfield A, Imundo LF. Favorable outcome of juvenile dermatomyositis treated without systemic corticosteroids. J Pediatr. 2010;156:301–7.

    Article  CAS  Google Scholar 

  33. Challa D, Crowson CS, Niewold TB, Reed AM. Predictors of changes in disease activity among children with juvenile dermatomyositis enrolled in the Childhood Arthritis and Rheumatology Research Alliance CARRA Legacy Registry. Clin Rheumatol. 2018;37(4):1011–5.

    Article  PubMed  Google Scholar 

  34. Joshi P, Dhaneshwar SS. An update on disease modifying antirheumatic drugs. Inflamm Allergy Drug Targets. 2014;13(4):249–61.

    Article  CAS  PubMed  Google Scholar 

  35. Miller LC, Sisson A, Tucker BA, DeNardo A, Schaller JG. Methotrexate treatment of recalcitrant childhood dermatomyositis. Arthritis and Rheum. 1992;35(10):1143–9.

    Article  CAS  Google Scholar 

  36. Reed AM, Lopez M. Juvenile dermatomyositis: recognition and treatment. Pediatr Drugs. 2002;4:315–21.

    Article  Google Scholar 

  37. Al-Mayouf S, Al_Mazyed A, Bahabri S. Efficacy of early treatment of severe juvenile dermatomyositis with intravenous methylprednisolone and methotrexate. Clin Rheumatol. 2000;19:138–41.

    Article  CAS  PubMed  Google Scholar 

  38. Villalba L, Hicks JE, Adams EM, et al. Treatment of refractory myositis: a randomized cross-over study of two new cytotoxic regimens. Arthritis Rheum. 1998;41(3):392–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ruperto N, Pistorio A, Oliveira S, Zulian F, Cuttica R, et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: a randomized trial. Lancet. 2016;387:671–8.

    Article  PubMed  Google Scholar 

  40. Girardin E, Dayer JM, Paunier L. Cyclosporine for juvenile dermatomyositis. J Pediatr. 1988;112(1):165–6.

    Article  CAS  PubMed  Google Scholar 

  41. Heckmatt J, Hasson N, Saunders C, et al. Cyclosporine in juvenile dermatomyositis. Lancet. 1989;1(8646):1063–6.

    Article  CAS  PubMed  Google Scholar 

  42. Zabel P, Leimenstoll G, Gross WL. Cyclosporine for acute dermatomyositis. Lancet. 1984;1(8372):343.

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi I, Yamada M, Takahashi Y. Interstitial lung disease associated with juvenile dermatomyositis: clinical features and efficacy of cyclosporine A. Rheumatology. 2003;42(2):371–4.

    Article  CAS  PubMed  Google Scholar 

  44. Hasija R, Pistorio A, Ravelli A, et al. Therapeutic approaches in the treatment of juvenile dermatomyositis in patients with recent-onset disease and those experiencing disease flare. Arthritis Rheum. 2011;63(10):3142–52.

    Article  PubMed  Google Scholar 

  45. Allison AC, Eugui EM. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transpl. 1996;1(1 Pt 2):77–84.

    Google Scholar 

  46. Gelber AC, Nousari HC, Wigley FM. Mycophenolate mofetil in the treatment of severe skin manifestations of dermatomyositis: a series of 4 cases. J Rheumatol. 2000;27(6):1542–5.

    CAS  PubMed  Google Scholar 

  47. Riley P, Maillard SM, Wedderburn LR, et al. Intravenous cyclophosphamide pulse therapy in juvenile dermatomyositis. A review of efficacy and safety. Rheumatology. 2004;43:491–6.

    Article  CAS  PubMed  Google Scholar 

  48. Negi VS, Elluru S, Siberil S, Graff-Dubois S, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27(3):233–45.

    Article  CAS  PubMed  Google Scholar 

  49. Jacob S, Rajabally YA. Current proposed mechanisms of action of intravenous immunoglobulins in inflammatory neuropathies. Curr Neuropharmacol. 2009;7(4):337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vedanarayanan V, Subramony SH, Ray LI, et al. Treatment of childhood dermatomyositis with high dose intravenous immunoglobulin. Pediatr Neurol. 1995;13:336–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kokori H, Fotoulaki M, Giannakopoulou C, et al. Intravenous immunoglobulin treatment in a girl with juvenile dermatomyositis. Pediatr Int. 1999;41:696–7.

    Article  CAS  PubMed  Google Scholar 

  52. Sansome A, Dubowitz V. Intravenous immunoglobulin in juvenile dermatomyositis—four year review of nine cases. Arch Dis Child. 1995;72:25–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Al-Mayouf SM, Laxer RM, Schneider R, et al. Intravenous immunoglobulin therapy for juvenile dermatomyositis: efficacy and safety. J Rheumatol. 2000;27:2498–503.

    CAS  PubMed  Google Scholar 

  54. Dalakas MC, Illa I, Dambrosia JM, et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N Engl J Med. 1993;329:1993–2000.

    Article  CAS  PubMed  Google Scholar 

  55. Lam CG, Manlhiot C, Pullenayegum EM, Feldman BM. Efficacy of intravenous Ig therapy in dermatomyositis. Ann Rheum Dis. 2011;70:2089–94.

    Article  CAS  PubMed  Google Scholar 

  56. De Inocencio J, Enriquez-Merayo E, Cascado R, Gonzalez-Granado LI. Subcutaneous immunoglobulin in refractory juvenile dermatomyositis. Pediatrics. 2016;137(4) https://doi.org/10.1542/peds.2015-3537.

    Article  PubMed  Google Scholar 

  57. Speth F, Haas JP, Hinze CH. Treatment with high-dose recombinant human hyaluronidase-facilitated subcutaneous immune globulins in patients with juvenile dermatomyositis who are intolerant to intravenous immune globulins: a report of 5 cases. Pediatr Rheumatol Online J. 2016;14(1):52. https://doi.org/10.1186/s12969.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Spencer CH, Rouster-Stevens K, Gewanter H, et al. Biologic therapies for refractory juvenile dermatomyositis: five years of experience of the Childhood Arthritis and Rheumatology Research Alliance in North America. Pediatr Rheumatol Online J. 2017;15(1):50. https://doi.org/10.1186/s12969-017-0174-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arahata K, Engel AG. Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann Neurol. 1984;16(2):193–208.

    Article  CAS  PubMed  Google Scholar 

  60. Ray A. Autoantibodies produced at the site of tissue damage provide evidence of humoral autoimmunity in inclusion body myositis. PLoS One. 2012;7(10):e46709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Litinskiy MB, et al. DCs induce CD40-independent immunoglobulin class switching through Blys and APRIL. Nature Immunol. 2002;3(9):822–9.

    Article  CAS  Google Scholar 

  62. Krystufkova O, Vallerskog T, Helmers SB, et al. Increased serum levels of B cell activating factor in subsets of patients with idiopathic inflammatory myopathies. Ann Rheum Dis. 2009;68(6):836–43.

    Article  CAS  PubMed  Google Scholar 

  63. Page G, Chevrel G, Miossec P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: interactions with chemokines and Th-1 cytokine-producing cells. Arthritis Rheum. 2004;50(1):199–208.

    Article  CAS  PubMed  Google Scholar 

  64. Lopez de Padilla CM, Vallejo AN, Lacomis D, et al. Extranodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum. 2009;60(4):1160–72.

    Article  PubMed  Google Scholar 

  65. Lahouti AH, Amato AA, Christopher-Stine L. Inclusion body myositis: update. Curr Opin Rheumatol. 2014;26(6):690–6.

    Article  CAS  PubMed  Google Scholar 

  66. Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JCW. Reconstitution of peripheral blood cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54:613–20.

    Article  CAS  PubMed  Google Scholar 

  67. Aggarwal R, Bandos A, Reed AM, et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. Arthritis Rheum. 2014;66(3):740–9.

    Article  CAS  Google Scholar 

  68. Reed AM, Crowson CS, Hein M, et al. Biologic predictors of clinical improvement in rituximab-treated refractory myositis. BMC Musculoskelet Disord. 2015;16:257. https://doi.org/10.1186/s12891.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Aggarwal R, Oddis CV, Goudeau D, et al. Autoantibody levels in myositis patients correlate with clinical responses during B cell depletion with rituximab. Rheumatology. 2016;55(6):991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aggarwal R, Loganathan P, Koontz D, et al. Cutaneous improvement in refractory adult and juvenile dermatomyositis after treatment with rituximab. Rheumatology. 2017;56:247–54.

    Article  CAS  PubMed  Google Scholar 

  71. Pandya JM, Fasth AE, Zong M, et al. Expanded T cell receptor Vβ-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum. 2010;62(11):3457–66.

    Article  CAS  PubMed  Google Scholar 

  72. Grassi M, Capello F, Bertolino L, et al. Identification of granzyme B-expressing CD-8 positive T cells in lymphocytic inflammatory infiltrate in cutaneous lupus erythematosus and in dermatomyositis. Clin Exp Dermatol. 2009;34(8):910–4.

    Article  CAS  PubMed  Google Scholar 

  73. Mizuno K, Yachie A, Nagaoki S, et al. Oligoclonal expansion of circulating and tissue-infiltrating CD8+ T cells with killer/effector phenotypes in juvenile dermatomyositis syndrome. Clin Exp Immunol. 2004;137(1):187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buchbinder E, Hodi FS. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Invest. 2015;125(9):3377–83.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bradshaw EM, Orihuela A, McArdel SL, et al. A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol. 2007;178(1):547–56.

    Article  CAS  PubMed  Google Scholar 

  76. Nagaraju K, Raben N, Merritt G, et al. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clin Exp Immunol. 1998;113(3):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Szodoray P, Alex P, Knowlton N, et al. Idiopathic inflammatory myopathies, signified by distinctive peripheral cytokines, chemokines and the TNF family members B-cell activating factor and a proliferation inducing ligand. Rheumatology. 2010;49(10):1867–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chevrel G, Page G, Granet C, et al. Interleukin-17 increases the effects of IL-1 beta on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J Neuroimmunol. 2003;137(1–2):125–33.

    Article  CAS  PubMed  Google Scholar 

  79. Lopez de Padilla CM, Reed AM. Dendritic cells and the immunopathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol. 2008;20(6):669–74.

    Article  CAS  Google Scholar 

  80. Eloranta ML, Barbasso Helmers S, Ulfgren AK, et al. A possible mechanism for endogenous activation of the type I interferon system in myositis patients with anti-Jo-1 or anti-Ro-52/anti-Ro-60 antibodies. Arthritis Rheum. 2007;56(9):3112–24.

    Article  CAS  PubMed  Google Scholar 

  81. De Paepe B, Zschuntzsch J. Scanning for therapeutic targets within the cytokine network of idiopathic inflammatory myopathies. Int J Mol Sci. 2015;16:18683–713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Narazaki M, Hagihara K, Shima Y, et al. Therapeutic effect of tocilizumab on two patients with polymyositis. Rheumatology. 2011;50(7):1344–7.

    Article  PubMed  Google Scholar 

  83. Kondo M, Murakawa Y, Matsumura T, et al. A case of overlap syndrome successfully treated with tocilizumab: a hopeful treatment strategy for refractory dermatomyositis? Rheumatology. 2014;53(10):1907–8.

    Article  CAS  PubMed  Google Scholar 

  84. Cabrera N, Duquesne A, Desjonqueres M, et al. Tocilizumab in the treatment of mixed connective tissue disease and overlap syndrome in children. RMD Open. 2016;15(2):e000271.

    Article  Google Scholar 

  85. Lundberg I, Brengman JM, Engel AG. Analysis of cytokine expression in inflammatory myopathies, Duchenne dystrophy, and non-weak controls. J Neuroimmunol. 1995;63(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  86. Mamyrova G, O’Hanlon TP, Sillers L, Malley K. Cytokine gene polymorphisms as risk and severity factors for juvenile dermatomyositis. Arthritis Rheum. 2008;58(12):3941–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM. Gene-gene-sex interaction in cytokine gene polymorphisms revealed by serum interferon alpha phenotype in juvenile dermatomyositis. J Pediatr. 2010;157:653–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hristova M, Dourmishev L, Kamenarska Z, et al. Role of the promoter polymorphism IL-6-174G/C in dermatomyositis and systemic lupus erythematosus. Biomed Res Int. 2013;2013:315365. https://doi.org/10.1155/2013/315365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pagnini I, Vitale A, Selmi C, et al. Idiopathic inflammatory myopathies: an update on classification and treatment with special focus on juvenile forms. Clin Rev Allergy Immunol. 2017;52(1):34–44.

    Article  CAS  PubMed  Google Scholar 

  90. Rouster-Stevens K, Ferguson L, Morgan G, et al. Pilot study of etanercept in patients with refractory juvenile dermatomyositis. Arthritis Care Res. 2014;66(5):783–7.

    Article  CAS  Google Scholar 

  91. Mackay F, Ambrose C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev. 2003;14(3–4):311–24.

    Article  CAS  PubMed  Google Scholar 

  92. Mackay F, Silveira PA, Brink R. B cells and the BAFF/APRIL axis: fast forward on autoimmunity and signaling. Curr Opin Immunol. 2007;19(3):327–36.

    Article  CAS  PubMed  Google Scholar 

  93. Lopez de Padilla CM, McNallan KT, Crowson CS, et al. BAFF expression correlates with idiopathic inflammatory myopathy disease activity measures and autoantibodies. J Rheumatol. 2013;40(3):294–302.

    Article  CAS  PubMed  Google Scholar 

  94. Grundtman C, Salomonsson S, Dorph C, et al. Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal muscle in patients with idiopathic inflammatory myopathies. Arthritis Rheum. 2007;56:674.

    Article  PubMed  Google Scholar 

  95. Zong M, Dorph C. Dastmalchi, et al. Anakinra treatment in patients with refractory inflammatory myopathies and possible predictive response biomarkers: a mechanistic study with 12 months follow up. Ann Rheum Dis. 2014;73(5):913–20.

    Article  CAS  PubMed  Google Scholar 

  96. Lilleby V, Haydon J, Sanner H, et al. Severe macrophage activation syndrome and central nervous system involvement in juvenile dermatomyositis. Scand J Rheumatol. 2014;43(2):171–3.

    Article  CAS  PubMed  Google Scholar 

  97. Tournarde A, Miossec P. Interleukin-17 in inflammatory myopathies. Curr Rheumatol Rep. 2012;14:252–6.

    Article  CAS  Google Scholar 

  98. Chevrel G, Page G. Granet, et al. Interleukin-17 increases the effects of IL-1 β on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J Neuroimmunol. 2003;137:125–33.

    Article  CAS  PubMed  Google Scholar 

  99. Page G, Chevrel G, Miossec P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: interactions with chemokines and Th-1 cytokine-producing cells. Arthritis Rheum. 2004;50:199–208.

    Article  CAS  PubMed  Google Scholar 

  100. Tournandre A, Porcherot M, Cherin P, et al. Th1 and Th17 balance in inflammatory myopathies: interaction with dendritic cells and possible link with response to high-dose immunoglobulins. Cytokine. 2009;46:297–301.

    Article  CAS  Google Scholar 

  101. Higgs BW, Zhu W, Richman L, et al. Identification of activated cytokine pathways in the blood of systemic lupus erythematosus, myositis, rheumatoid arthritis, and scleroderma patients. Int J Rheum Dis. 2012;15:25–35.

    Article  CAS  PubMed  Google Scholar 

  102. Bilgic H, Ytterberg SR, Amin S, et al. Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 2009;60(11):3436–46.

    Article  CAS  PubMed  Google Scholar 

  103. O’Connor KA, Abbott KA, Sabin B, et al. MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: association with muscle involvement. Clin Immunol. 2006;120(3):319–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664–78.

    Article  CAS  PubMed  Google Scholar 

  105. Baechler EC, Bauer JW, Slattery CA, et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med. 2007;13(1–2):59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liston A, Lesage S, Gray DH, et al. Genetic lesions in T-cell tolerance and thresholds for autoimmunity. Immunol Rev. 2005;204:87–101.

    Article  CAS  PubMed  Google Scholar 

  107. Higgs BW, Zhu W, Morehouse C, et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann Rheum Dis. 2014;73:256–62.

    Article  CAS  PubMed  Google Scholar 

  108. Ducreux J, Houssiau FA, Vandepapaliere P, et al. Interferon alpha kinoid induces neutralizing anti-interferon alpha antibodies that decrease the expression of interferon-induced B cell activation associated transcripts: analysis of extended follow-up data from the interferon alpha kinoid phase I/II study. Rheumatology. 2016;55(10):1901–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis. 2012;71(3):440–7.

    Article  CAS  PubMed  Google Scholar 

  110. Paik JJ, Christopher-Stine L. A case of refractory dermatomyositis responsive to tofacitinib. Semin Arthritis Rheum. 2017;46(4):e19. https://doi.org/10.1016/j.semarthrit.2016.08.009.

    Article  PubMed  Google Scholar 

  111. Hornung T, Janzen V, Wenzel J, et al. Remission of recalcitrant dermatomyositis treated with ruxolitinib. N Engl J Med. 2014;371(26):2537–8.

    Article  PubMed  Google Scholar 

  112. Tournarde A, Lenief V, Miossec P. Expression of toll-like receptor 3 and toll-like receptor 7 in muscle is characteristic of inflammatory myopathy and is differentially regulated by Th1 and Th17 cytokines. Arthritis Rheum. 2010;62(7):2144–51.

    Google Scholar 

  113. Li L, Dai T, Lv J, et al. Role of toll-like receptors and retinoic acid inducible gene I in endogenous production of type I interferon in dermatomyositis. J Neuroimmunol. 2015;285:161–8.

    Article  CAS  PubMed  Google Scholar 

  114. Wulfratt NM, Sanders L, Kuis W. Autologous hemopoietic stem-cell transplantation for children with refractory autoimmune disease. Curr Rheumatol Rep. 2000;2(4):316–23.

    Article  Google Scholar 

  115. Enders FB, Delemarre EM, Kuemmerle-Deschner J, et al. Autologous stem cell transplantation leads to a change in proinflammatory plasma cytokine profile of patients with juvenile dermatomyositis correlating with disease activity. Ann Rheum Dis. 2015;74(1):315–7.

    Article  CAS  Google Scholar 

  116. Delamarre EM, den Broek V, Mijnheer G, et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood. 2016;127(1):91–101.

    Article  CAS  Google Scholar 

  117. Pinto AJ, Solis MY, de Sa Pinto AL, et al. Physical (in)activity and its influence on disease-related features, physical capacity, and health-related quality of life in a cohort of chronic juvenile dermatomyositis patients. Semin Arthritis Rheum. 2016;46:64–70.

    Article  PubMed  Google Scholar 

  118. Jain MS, Smith MR, Hicks JE. Rehabilitation of the child with myositis. In: Rider LG, Pachman LM, Miller FW, Bollar H, editors. Myositis and you: a guide to Juvenile Dermatomyositis for patients, families and healthcare providers. Washington DC: The Myositis Association; 2007. p. 173–90.

    Google Scholar 

  119. Enders FB, Bader-Menier B, Baildam E, et al. Consensus-based recommendations for the management of juvenile dermatomyositis. Ann Rheum Dis. 2016;0:1–12. https://doi.org/10.1136/annrheumdis-2016-209247.

    Article  Google Scholar 

  120. Alexanderson H, Stenstrom CH, Lundberg I. Safety of a home exercise programme in patients with polymyositis and dermatomyositis: a pilot study. Rheumatology. 1999;38:608–11.

    Article  CAS  PubMed  Google Scholar 

  121. Alexanderson H, Stenstrom CH, Jenner G, et al. The safety of a resistive home exercise program in patients with recent onset active polymyositis or dermatomyositis. Scand J Rheumatol. 2000;29:295–301.

    Article  CAS  PubMed  Google Scholar 

  122. Habers GE, van Royen-Kerkhof A, Lelieveld OT, et al. Muscles in motion: a randomized controlled trial on the feasibility, safety and efficacy of an exercise training programme in children and adolescents with juvenile dermatomyositis. Rheumatology. 2016;55(7):1251–62.

    Article  PubMed  Google Scholar 

  123. Munters LA, Alexanderson H, Crofford LJ, Lundberg IE. New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis. Curr Rheumatol Rep. 2014;16(7):429. https://doi.org/10.1007/s11926.

    Article  PubMed Central  Google Scholar 

  124. Munters LA, Loell I, Ossipova E, et al. Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheum. 2016;68(7):1738–50.

    Article  CAS  Google Scholar 

  125. Rider LG, Lachenbruch PA, Monroe JB, et al. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the Myositis Damage Index. Arthritis Rheum. 2009;60:3425–35.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huber AM, Lang BA, LeBlanc CM, et al. Medium- and long-term functional outcomes in a multicenter cohort of children with juvenile dermatomyositis. Arthritis Rheum. 2000;43:541–9.

    Article  CAS  PubMed  Google Scholar 

  127. Pachman LM, Hayford JR, Chung A, et al. Juvenile dermatomyositis at diagnosis: clinical characteristics of 79 children. J Rheumatol. 1998;25(6):1198–204.

    CAS  PubMed  Google Scholar 

  128. Sanner H, Gran JT, Sjaastad I, Flato B. Cumulative organ damage and prognostic factors in juvenile dermatomyositis: a cross-sectional study median 16.8 years after symptom onset. Rheumatology. 2009;48(12):1541–7.

    Article  PubMed  Google Scholar 

  129. Lowry CA, Pilkington CA. Juvenile dermatomyositis: extramuscular manifestations and their management. Curr Opin Rheumatol. 2009;21(6):575–80.

    Article  CAS  PubMed  Google Scholar 

  130. Gunawardena H, Wedderburn LR, Chinoy H, et al. Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis Rheum. 2009;60(6):1807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rider LG, Nistala K. The juvenile idiopathic inflammatory myopathies: pathogenesis, clinical and autoantibody phenotypes, and outcomes. J Intern Med. 2016;280(1):24–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pachman LM, Fedczyna TO, Lechman TS, Lutz J. Juvenile dermatomyositis: the association of the TNF alpha-308A allele and disease chronicity. Curr Rheumatol Rep. 2001;3(5):379–86.

    Article  CAS  PubMed  Google Scholar 

  133. Kim S, El-Hallak M, Dedeoglu F, et al. Complete and sustained remission of juvenile dermatomyositis resulting from aggressive treatment. Arthritis Rheum. 2009;60(6):1825–30.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Touimy M, Janani S, Rachidi W, et al. Calcinosis universalis complicating juvenile dermatomyositis: improvement after intravenous immunoglobulin therapy. Joint Bone Spine. 2013;80(1):108–9.

    Article  PubMed  Google Scholar 

  135. Slimani S, Abdessemed A, Haddouche A, Ladjouze-Rezig A. Complete resolution of universal calcinosis in a patient with juvenile dermatomyositis using pamidronate. Joint Bone Spine. 2010;77(1):70–2.

    Article  PubMed  Google Scholar 

  136. Oliveri MB, Palermo R, Mautalen C, Hubscher O. Regression of calcinosis during diltiazem treatment in juvenile dermatomyositis. J Rheumatol. 1996;23(12):2152–5.

    CAS  PubMed  Google Scholar 

  137. Nakamura H, Kawakami A, Ida H, et al. Efficacy of probenecid for a patient with juvenile dermatomyositis complicated with calcinosis. J Rheumatol. 2006;33(8):1691–3.

    PubMed  Google Scholar 

  138. Hoeltzel MF, Oberle EJ, Robinson AB, et al. The presentation, assessment, pathogenesis, and treatment of calcinosis in juvenile dermatomyositis. Curr Rheumatol Rep. 2014;16(12):467. https://doi.org/10.1007/s11926.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Pagnini I, Simonini G, Giani T, Cantarini L, Cimaz R. PReS-FINAL-2013: sodium thiosulfate for the treatment of juvenile dermatomyositis complicated by calcinosis. Clin Exp Rheumatol. 2014;32(3):408–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Dvergsten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dvergsten, J., Reed, A. (2020). Management Considerations: Juvenile Dermatomyositis. In: Aggarwal, R., Oddis, C. (eds) Managing Myositis. Springer, Cham. https://doi.org/10.1007/978-3-030-15820-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15820-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15819-4

  • Online ISBN: 978-3-030-15820-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics